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ABSTRACT 

The thesis deals with the stabilization and control of sattelites’ attitude using different 

clusters of control moment gyros (four pyramidal configurations) or inertial wheels (standard, 

tetrahedral and pyramidal configurations) as actuators; the dynamic inversion, neural networks, 

backstepping method are the main control methods used for the the stabilization and control of 

sattelites’ attitude. The first chapter defines the attitude of the satellites which expresses the 

position of the satellite tied frame with respect to the local orbital frame, through the Euler 

angles and quaternion vectors. It is also addressed the problem of the automatic control of the 

satellites’ attitude using feedbacks after the vector q, the angular speed vector (ω), with 

saturation zones after the two vectors (q and ω). The control law is PD type and has a 

component depending on the moment generated by the inertial wheels; the system follows the 

model of the reference frame. In the second chapter, one presented a study regarding the 

actuators with inertial wheels (different configurations) used in the stabilization systems f the 

satellites’ attitude. Then, it is designed a new automatic configuration of the satellite’s attitude using 

the backstepping method with different actuators (inertial wheel type). In the third chapter, one 

elaborates patterns for the four pyramidal clusters with CMGs/VSCMGs; there is also designed 

a new automatic architecture for the control of satellite’s attitude using a control law having a PI 

component after the quaternion vector q and a proportional component after the angular velocity 

of the satellite; as actuator, the automatic control system uses a pyramidal structure with CMGs. 

In the fourth chapter, there are presented different automatic attitude control structures by 

using four different pyramidal clusters with VSCMGs. Such control systems are designed by 

means of PD laws and similar systems to further control of the stored power by the pyramidal 

clusters and to equalize the angular velocity of the gyroscopic rotors, respectively. The fifth 

chapter presents a study on the singularities of the systems having CMGs/VSCMGs; one defines the 

envelope of the total kinetic moment for the VSCMGs’ clusters. In this final chapter, the general 

conclusions, the personal contributions and further research developments are presented. 
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SHORT PRESENTATION OF THE THESIS 

Chapter 1 

 This chapter presents the necessity, timeliness and importance of the topic addressed. 

The specific objectives of the research are also presented.  

 A key issue in satellites’ missions is the calculation and the control of the satellites. 

Therefore, it was also the subject of much scientific research works. Among these, there may 

be mentioned the works [1], [8], [10], [21], [68], [69], [73], [78], [79], [80], [82].  

 The first chapter defines the attitude of the satellite (S) which expresses the position of the 

satellite tied frame with respect to the local orbital frame, through the Euler angles and 

quaternion vectors; relative rotation and the transport matrices are also defined. The quaternion 

vectors are calculated as the kinematic solutions of differential equations, depending on the 

relative, transport and absolute angular velocities. By identifying of the attitude matrices 

expressed by Euler angles or by the quaternion vectors, one established calculation relationships 

for the Euler angles with respect to the quaternion vectors; also, one sets calculation relations 

for the roll, pitch and yaw angular speeds with respect to the angular speeds around the axes of 

the satellite tied reference system. 

 It is also addressed the problem of the automatic control of the satellites’ attitude using 

feedbacks after the vector q, the angular speed vector (ω), with saturation zones after the two 

vectors (q and ω). The motion control law is designed such that the satellite S performs a 

typical maneuver around its own axis, consisting of three phases [78]: 1) accelerated angular 

movement; 2) free (uniform) motion; 3) decelerated motion. For the automatic control 

architecture, the Matlab/Simulink model is built and the time characteristics expressing the 

dynamics of the state and command variables. Also, one studied the problem of the automatic 

control of the satellite’s attitude and stored energy using inertial wheels such that S follows 

two targets: the sun and the earth station. The automatic control system first makes the 

initialization using the thrusters; in this stage, moves fat, with ample rotations such that the 

axis of the solar panels is oriented toward the sun, and the satellite’s symmetry axis is oriented 

toward a ground station. In the second stage, the control system permanentely follows the two 

targets in the same time with the control of the stored energy, using inertial wheels; the 

inertial wheels are accelerated during exposure to the sun by absorbing the energy supplied by 

the solar panels, creating, as feedback, command moments for the satellite’s motion; during 

the eclipse, the inertial wheels are deccelerate by consuming the stored energy during their 

acceleration stage. The control law is PD type and has a component depending on the moment 

generated by the inertial wheels [69]; the system follows the model of the reference frame 

[40]. For the automatic control system of the satellite’s attitude, one obtained the Matlab/ 

Simulink model and its dynamic characteristics. 
 



 

Chapter 2 

 In the second chapter, one presented a study regarding the actuators with inertial wheels 

(different configurations) used in the stabilization systems f the satellites’ attitude; the study is 

based on the following works [15], [19], [22], [23], [28], [30], [31], [32], [34], [55], [58], [63], 

[64], [66], [67]. First of all, the standard configuration is presented; it has three inertial wheels 

(configuration having the rotors’ axes parallel to the axes satellite tied frame) and then pyramidal and 

tetrahedron configurations. One deduced the dynamic models of the ensemble satellite-actuator for 

all these configurations. Then, it is designed a new automatic configuration of the satellite’s attitude 

using the backstepping method with different actuators (inertial wheel type). The system has two 

subsystems: 1) the attitude controller which provides the vector of generator couple; 2) the 

calculation block of the imposed angular velocities of the inertial wheels relative to the satellite; 3) 

the controller for the vector of inertial wheels’ angular velocities; 4) the controller for the vector of 

inertial wheelss couple; 5) the modeling block of the actuator with inertial wheels; 6) the modeling 

block of the satellite’s dynamics. Matlab/Simulink models are obtained for the control systems 

with actuators in standard, pyramidal and tetrahedron configurations. Using these and the 

afferent software, one obtained the dynamic characteristics of the system. In the event of a 

wheel’s failure, one changes the matrix expressing the dependence between the moments 

generated by the inertial wheels and the moments induced after the axes of the satellite tied 

frame; dynamic characteristics of the system are plotted with actuators and tetrahedral 

pyramidal configuration in case of failure of a wheel of inertia; in this case, the other three 

take charge of the damaged wheel. 

Chapter 3 

In the third chapter, one elaborates patterns for the four pyramidal clusters with CMGs/ 

VSCMGs, structures that are presented and studied in the papers [8], [54], [75], [81]. The 

inertial wheels (RI) are manoeuvrable and produce small rotations of S; they have the 

disadvantage that, for carrying out extensive maneuvers, large wheels are required; the created 

couples depend on the wheel’s dimensions. Thus, to create large control couples, RI should be 

large and therefore heavy loads. Therefore, the inertia wheels are used to the stabilization of the 

small satellites’ attitude; the inertial wheels produce torques of maximum 1.5 Nm. The CMGs 

provide important control couples (up to 3000 Nm), with kinetic momentum up to 3000 Nms. 

An embodiment of the CMG is VSCMG (CMG with variable proper angular velocity). Having 

a degree of freedom in addition, VSCMGs have the possibility of storing energy while 

controlling attitude. For each of the four versions of pyramidal structures, there are calculated 

the gyro moments generated by each CMG/VSCMG by the axes of S and the resultant moments 

generated by the pyramidal architectures after the same axes of the satellite. Also, the matrix 

expressing the dependence between the resultant gyro moment vector and the vector of the gyro 

frames’ agular velocities as well as the cosines’ matrices of the angles between the axes of the 

satellite tied pyramidal frame, respectively, the axes of rotation of the gyros, the transversal axes 



 

of the CMGs/VSCMGs and the axes of rotation of the rotary frame; these matrices are useful 

for the calculation of the inertia moments of the satellite. In the second part of the chapter, there 

is designed a new automatic architecture for the control of satellite’s attitude using a control law 

having a PI component after the quaternion vector q and a proportional component after the 

angular velocity of the satellite. As actuator, the automatic control system uses a pyramidal 

structure with CMGs. The Matlab/Simulink model is built and the afferent software; with these, 

the dynamic characteristics of the system are plotted for the pyramidal with CMGs. 

Chapter 4 

 In the fourth chapter, there are presented different automatic attitude control structures 

by using four different pyramidal clusters with VSCMGs. Such control systems are designed 

by means of PD laws and similar systems to further control of the stored power by the 

pyramidal clusters and to equalize the angular velocity of the gyroscopic rotors, respectively. 

One built Matlab/Simulink models and, with these, the characteristics for the systems are 

obtained (for all four variants of pyramidal clusters with VSCMGs). Then, there are designed 

adaptive attitude control structures using one of the four different clusters with VSCMGs; 

these systems use the estimates of the inertia moment matrices and of the dynamic damping 

matrices; similar systems are designed for the additional control of the power stored by the 

pyramidal clusters, respectively, for the equalization of the gyro rotors’ angular velocities. For 

all these systems, Matlab/Simulink models are obtained and, using these, time characteristics 

resulted. Also, there are designed adaptive attitude control structures using one of the variants cluster 

VSCMGs; the dynamic inversion method is used together with neural networks; there are designed 

architectures with additional control power stored by the pyramidal clusters, respectively, for the 

equalization of the gyro rotors’ angular velocities. Matlab/Simulink models are obtained and time 

characteristics resulted. 

Chapter 5 

 The fifth chapter presents a study on the singularities of the systems having CMGs/ VSCMGs, 

this being a problem studied recently by many researchers [18], [20], [29], [36], [37], [53] [56], [57], 

[60], [61], [71], [76], [81], [82]. There is disclosed a system model of a CMGs/VSCMGs, with an 

emphasis on the single state. It discloses a method for avoiding singularities using zero motion 

without power control method based on the calculation of the gradient of the singularity conditioning 

factor as a measure of their neighborhood. One defines the envelope of the total kinetic moment for 

the VSCMGs’ clusters. 

Chapter 6 

 In this final chapter, the general conclusions, the personal contributions and further research 

developments are presented. 
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