
 

 

UNIVERSITY POLITEHNICA OF BUCHAREST 

FACULTY OF BIOTECHNICAL SYSTEMS 
ENGINEERING 

 

Doctoral school: Biotechnical Engineering 

Senate number … from …./2018 

 

 Summary 

THESIS FOR DEGREE OF DOCTOR OF 
PHILOSOPHY  

“Contribution to Kinematic and Dynamic Study of Rigid Bodies” 

PhD Student: Ing. NGUYEN THIEN VAN 
PhD Supervisor: Prof. dr. ing. ION STROE 

 

PhD COMMISSION 

President Prof. dr. ing. DAVID LADISLAU 
Faculty of biotechnical 

engineering-UPB 

PhD Supervisor Prof. dr. ing. Ion STROE 
Faculty of biotechnical 

engineering-UPB 

Reviewer Prof. dr. ing. Andrei CRAIFALEANU 
Faculty of biotechnical 

engineering-UPB 

Reviewer CS1, dr.ing. Achim IONITA INCAS-Bucharest 

Reviewer Prof. dr. ing. Dinel POPA Pitesti University 

BUCHAREST 2018 



 
 

Contents 
1. Abstract ....................................................................................................................................... 3 

2. Kinematics and Dynamics of rigid bodies system ........................................................................ 3 

2.1. Determining linear velocity of a point of rigid body in the mechanism .............................. 3 

2.2. Determining angular velocity of a rigid body in the mechanism ......................................... 4 

2.3. Equations of motion of rigid bodies system ....................................................................... 5 

2.4. Method for calculus of internal forces ............................................................................... 6 

3. Calculus of internal forces in planar mechanisms ......................................................................... 7 

3.1. Calculating internal forces in an element of mechanism ..................................................... 7 

3.1.1. Calculating constraint force ............................................................................................ 7 

3.1.2. Calculating axial force, shear force, and bending moment .............................................. 8 

3.2. Calculating internal forces in a group of links in mechanism ........................................... 10 

4. Calculus of internal forces in spatial mechanisms ...................................................................... 14 

4.1. Calculus of axial force in the end-effector ....................................................................... 15 

4.2. Calculus of shear force in the end-effector ....................................................................... 16 

4.3. Calculus of bending moment in the end-effector .............................................................. 18 

5. Controlling motion of a spatial 4-DOF manipulator ................................................................... 19 

5.1. Simulating model and equations of motion ...................................................................... 19 

5.2. Determining optimal parameters of PID controllers by using the GA ............................... 20 

6. Conclusions and Future Works .................................................................................................. 23 

SELECTIVE BIBLIOGRAPHY .................................................................................................... 24 

 

  



Contribution to Kinematic and Dynamic Study of Rigid Bodies PhD student: Nguyen Thien Van 
 

3 
 

1. Abstract 

This thesis presented a new method to determine directly internal forces in a rigid body of 
multibody systems or in a group of links having relative translation with each other based on 
Lagrange equations. With this method, we can avoid difficulties that previous methods encounter 
during computational process by without considering constraint forces appearing in connected 
joints between links of the multibody systems. 

By using a set of generalized coordinates that is consistent with constraint relations and 
describes completely configuration of the mechanism, we can establish the differential equations 
governing the motion of system. In addition, by introducing a supplementary mobility we can 
compute directly the internal force corresponding to that mobility thanks to the principle: If an 
internal force is found, a corresponding supplementary mobility is considered in the system. After 
forming the differential equation for the new mobility, the internal force will be determined via the 
equation by imposing null values of the mobility as well as its first and second derivatives. 

For illustrating proposed method, some commonly used mechanisms are chosen as models to 
analyze. They are planar mechanisms and spatial mechanism. With planar mechanisms, the slider-
crank and the system for controlling aircraft elevator are considered. In there, the internal forces are 
computed in the links having general plane motion (the connecting rod in the slider-mechanism, and 
the subsystem hydraulic cylinder for the other). And a 3-DOF articulated manipulator is considered 
to analyze for the case of spatial mechanism. For this case, internal forces in the end-effector are 
determined. 

Finally, the thesis also applies some fundamental definition of controlling theory and Genetic 
Algorithms (GAs) in tuning parameters of PID controllers to control a 4-DOF spatial mechanism, 
that the end-effector of the mechanism is imposed to follow a defined trajectory. Based on that, the 
Algorithm can be used and developed for simulating model robots in designed step. 

2. Kinematics and Dynamics of rigid bodies system 

2.1. Determining linear velocity of a point of rigid body in the mechanism 

Supposing we have a set of reference systems O0x0y0z0, O1x1y1z1,…, Oixiyizi,…, Onxnynzn as 
shown in the Figure 1. Determining position of an arbitrary point Pi on a rigid body (Bi) attached a 
reference frame Oixiyizi in the base frame O0x0y0z0 through pre-adjacent links, which can be 
specified about positions and orientations, is presented as following: 

From geometrical relations, we can write: 

 0 0 1 1 (1)(0) (0) ,i iO P O O O P 
  

 

 1 1 2 2 (2)(1)(1) ,i iO P O O O P 
  

 (1) 

 2 2 3 3(2) (2) (3) ,i iO P O O O P 
  

 

 ……………………… 
 1 1( 1) ( 1) ( ) .i i i i ii i i iO P O O O P   

  
 

Replacing successively all expressions of 1 2 (2) 3 (3) 1(1) ( 1), , ,...,i i i i i iO P O P O P O P 

   
 into the pre-

adjacent expressions, and finally into the expression of 0 (0)iO P


 , yielded: 

 0 0 1 1 2 2 3 (2) 1 ( 1) ( )(1)(0) (0) ...i i i i i i iO P O O O O O O O O O P      
     

, (2) 

where 1 ( 1)k k kO O 


is the vector giving position of the origin Ok in the reference frame Ok-1xk-1yk-1zk-

1 (with k=1, 2,…, i), 

( )i i iO P


 is the vector giving position of the point Pi in the reference frame Oixiyizi. 
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Figure 1.  The system of reference frames in space 

If we express the position of Pi in the base frame O0x0y0z0 in the matrix form, then Eq. (2) can 
be rewritten as below: 

 
             

           

0 0
0 0 1 1 2 2 3(1)1 2(0) (0) (2)

0 0 0
3 4 1 ( )3 1(3) ( 1)

. . .

. ... . .

i

i i i i ii ii

O P I O O R O O R O O

R O O R O O R O P 

   

   
, (3) 

Or in the generalized form 

              0 0
0 0 1 11(0) (0) ( 1) ( )

2

. . .
i

i k k i ik ik i
k

O P I O O R O O R O P 


   , (4) 

where  I  is the 33 identity matrix, 

  0
k R  is the transformation matrix giving the orientation of the reference frame Okxkykzk relative 

to the base reference frame O0x0y0z0 (with k=1, 2,…, i). 
And the linear velocity of the point Pi with respect to the base frame O0x0y0z0 is determined by 

carrying out the derivative versus time of Eq. (4), we obtained 

 

         
      

      

0 0 1(0) (0) (0)

0 0
1 11( 1) ( 1)1

2

0 0
( ) ( )

.

. .

. .

Pi i

i

k k k kkk kk
k

i i i iii ii

d d
V O P I O O

dt dt

d
R O O R O O

dt

d
R O P R O P

dt

  


  

       

   

 



, (5) 

2.2. Determining angular velocity of a rigid body in the mechanism 

Considering again the body (Bi) attached rigidly a reference frame Oixiyizi as shown in Figure 1. 
Based on pre-adjacent links (Bi-1) (i=1,2…,n) in the mechanism, the angular velocity vector ,0i


  is 

written in the form of matrix as  

        ,0 1,0 , 11( ) ( 1) ( )
.i

i i i iii i i
R    

  , (6) 

O0

O1

Oi-1

Oi

On

Pi

Bi
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Similarly, we can write formula defining angular velocities for the others 

        1
1,0 2,0 1, 22( 1) ( 2) ( 1)

.i
i i i iii i i

R  
     

   

        2
2,0 3,0 2, 33( 2) ( 3) ( 2)

.i
i i i iii i i

R  
     

  , (7) 

 ………………………………………………. 

        2
2,0 1,0 2,11(2) (1) (2)

.R     

      1,0 1,0(1) (1)
.I   

Replacing successively the post-expressions into pre-expressions from relations (6), (7), finally 
we obtained the generalized form determining the angular velocity of the body (Bi) in matrix form 
as following 

        
1

,0 , 1 , 1( ) ( ) ( )
1

.
i

i
i k k i iki k i

k

R  


 


  , (8) 

where  1
k

k R  is the transformation matrix giving the orientation of the reference frame Ok-1xk-1yk-

1zk-1 relative to the reference frame Okxkkykzk (with k=1, 2,…, i), 

  , 1 ( )k k k
   is the angular velocity vector of the body (Bk) relative to the body (Bk-1) and is 

defined in the reference frame Okxkkykzk (with k=1, 2,…, i), 

  ,0 ( )i i
  is the angular velocity vector of the body (Bi) with respect to the base frame and is 

measured in the body frame Oixiyizi, 

 i
k R

 
is the transformation matrix giving the orientation of the reference frame Okxkykzk relative 

to the reference frame Oixikyizi (with k=1, 2,…, i-1) and is computed as 

 
       1 1

1 2. ...i i i k
k i i kR R R R 

  , (9) 

And from Eq. (8) we can write the generalized form determining the angular velocity of the 

body (Bi) expressed in the base frame O0x0y0z0. By multiplying both sides of Eq. (8) with  0
i R , we 

have 

 
             

1
0 0 0

,0 , 1 , 1( ) ( ) ( )
1

. . . .
i

i
i k k i ii i k ii k i

k

R R R R  


 


  , (10) 

 Or 

 
       

1
0

,0 , 1 , 1(0) ( ) (0)
1

.
i

i k k i ik k
k

R  


 


  , (11) 

where  ,0 (0)i is the angular velocity of the body (Bi) expressed in the reference frame O0x0ky0z0. 

 0
k R is the transformation matrix giving the orientation of the reference frame Okxkykzk relative to 

the base frame O0x0ky0z0 (with k=1, 2,…, i-1) and is computed as 

        0 0 1 1
1 2. ... k

k kR R R R , (12) 

2.3. Equations of motion of rigid bodies system 

As known, based on deriving equations of motion of particles system, Lagrange equations can 
be applied for a rigid bodies system. 
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For a non-holonomic system, the Lagrange equations corresponding to a system of n 
generalized coordinates 

 
d

, ( 1, 2,..., )
d 1

CnE E
Q a j nj i ijt q q ij j


       
    


, (13) 

are completed with the nC constraints 

 ( , , ) 0 , ( 1, 2,..., )i CC q q t i n 
  ,  (14) 

in there, i

j

C
aij q





 is coefficient of the multiplier i . 

For holonomic system, the constraints are written as following 
 ( , ) 0 , ( 1, 2,..., )i CC q t i n 


,  (15) 

Then equations of motion for holonomic system of rigid bodies have expression as 

 
d

, ( 1, 2,..., )
d 1

nCE E
Q C j nj i it q q q ij j j


        
     


, (16) 

By defining the analytical function 

 
1

nC
U Ci i

i
 


, (17) 

Eq. (16) can be written in the form 

 
d

, ( 1, 2,..., )
d

E E U
Q j njt q q qj j j

        
    


, (18) 

Starting from these n differential equations and using nC relations of constraints, the generalized 
coordinates qj and the Lagrange multipliers λi are determined. 

2.4.  Method for calculus of internal forces 

For a mechanical system with n degrees of freedom represented by the independent generalized 
coordinates qj (j=1,2…, n) , the Lagrange equations are expressed as following 

 
d * , ( 1, 2,..., )
d

E E U
Q j njt q q qj j j

        
    


,  (19) 

An internal force Qn+1, as the new generalized force, can be found if a new fictitious mobility 
according to the force is considered. Then the mechanical system becomes one with (n+1) degrees 
of freedom. The equation for the new mobility is 

 d
1d 1 1 1

E E U
Qnt q q qn n n

   
          

, (20) 

Considering again the mechanism, the internal force n+1 is easily obtained from Eq. (20) in the 
form 

 
1

1

1

0
0
0

d
1 d 1 1 1 n

n

n

q
q
q

E E U
n t q q qn n n 








    
               




, (21) 
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3. Calculus of internal forces in planar mechanisms 

3.1. Calculating internal forces in an element of mechanism 

Let consider a slider-crank mechanism as the rigid bodies system with one degree of freedom 
shown in Figure 2. 

 
Figure 2. Slider-crank mechanism 

The mechanism consists of the crank (1) characterized by length OA=r, mass m1; the 
connecting rod (2) characterized by length AB=l, mass m2; and the slider (3) characterized by m3 
and dimensionless. The motion of the mechanism is created by an active torque Mo acting at the 
point O of crank OA. 

3.1.1. Calculating constraint force 

For calculating constraint force at point B of the mechanism with assumption that the friction in 
horizontal direction is negligible, v is considered as the supplementary displacement. So 
   1 2, ,q q v  are chosen as generalized coordinates as shown in Figure 3.  

 
Figure 3. Virtual supplementary displacement corresponding to the constrained force 

The kinetic energy has expression in the form as following 

 
         

         

1 1 2 2 2

2 2 2 3 3 3

1 1
. . . .

2 2
1 1

. . . .
2 2

TT
o C C

TT
C C C

E J r m r

J r m r

 

 

  

 

 

 
, (22) 

where moments of inertia of the crank (1) with the hinged point O, of the connecting rod (2) with 
the mass center C2 are  oJ , 2CJ ,  

   1 2,   are angular velocities measured in body reference frames, 

     2 3,C Cr r  are derivatives of position vectors of mass centers measured in inertial frame. 

The force function producing the conservative generalized force has expression below: 

o

C1

A

C2

B

1 2

3Mo

o

C1

A

C2

B

1

2

3

Mo

NB
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2

1
2 32 2 2

sin sin sin

2 2 24( sin )

m gr r rv v
U m g m gv

l r

  


 
        

, (23) 

 Then the conservative generalized force corresponding to v is calculated  

 
 

2 2
32 2 2

sin

22 sin

c
v

m grv m gU
Q m g

v l r






    
 

, (24) 

 And the external generalized force acting on the mechanism corresponding to v is calculated 

 
( )

0dib v
v

L M
Q

v




  , (25) 

 After taking partial derivatives with respect to v as well as taking total derivatives for the terms 
relating to the Lagrange equations, and applying Eq. (21), the constraint force at the point B is  

 

0
0
0

( )d

d
v

B v v
v
v

L ME E U
N

t v v v v


 




                





, (26) 

When the constraint force NB is obtained, the slider-crank mechanism being as closed-loop will 
be transformed to open-loop by releasing the constraint at point B and putting there the constraint 
force as the external force acting upon the system. Thenceforth, internal forces will be determined 
in the open-loop in next sections. 

3.1.2. Calculating axial force, shear force, and bending moment 

For calculating internal forces, we need to introduce some supplementary displacement as: 
- “u”, the translation movement in direction of the center axis of the connecting rod (2), is the 

virtual supplementary displacement corresponding to the axial force as shown Figure 4. Thus, 

   1 2, ,q q u are chosen as generalized coordinates representing the mechanism 

- “s”, the translation movement in direction perpendicular with center axis of the connecting rod 
(2), is the virtual supplementary displacement corresponding to shear force as shown in Figure 5. 
Thus,    1 2, ,q q s are chosen as generalized coordinates representing the mechanism. 

 - “ ”, the rotation movement about the axis perpendicular with vertical plane, is the virtual 
supplementary displacement corresponding to bending moment as shown in Figure 6. Thus, 
   1 2, ,q q   are chosen as generalized coordinates representing the mechanism. 

 
Figure 4 . Virtual supplemental displacement corresponding to the axial force 

o

C1

A

C2''

B

1

2''

3

N

C2'

2'

Mo

NB
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Figure 5. Virtual supplemental displacement corresponding to the shearing force 

 
Figure 6. Virtual supplemental displacement corresponding to the bending moment 

Carrying out similarly as the case for constraint force above, we will obtained the general form 
of internal forces by applying proposed method. Then apply law of motion for the crank (1) as: 

 

2

2
o

ot t


    , (27) 

with 225 ( / ), ( / )
100

rad s rad so o
     

and give the slider-crank some specified dimensions, and inertia characteristics as: 
0.1 ( ); 0.1 ( ); 0.1 ( ); 0.2 ( ); 0.1 ( )1 2 2 3m kg r m m kg l m m kg      

 By using Matlab software, we received graphs showing variation of constraint force with 
respect to time, as well as variations of internal forces with ratio /l as following: 

o

C1

A

B

1

3Mo

R

C2''

2''
C2'

NB
2'

o

C1

A

B

1

Mo

C2'
M 2''

C2''

2'

3

NB
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Figure 7. The constrained force at the end B 
with respect to time. 

Figure 8. Variation of the axial force with 
respect to “l ” at the instant time t=0.03(s). 

 

  
Figure 9. Variation of the shear force with 

respect to “l ” at the instant time t=0.03(s). 
Figure 10. Variation of the bending moment 

w.r.t  “l ” at the instant time t=0.03(s). 

3.2. Calculating internal forces in a group of links in mechanism 

 
Figure 11. The system for controlling the aircraft elevator 

O1

A

Mm1, l1

O4
F

m2, l2 m4, l4m3

C2

C4
C3
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A system for controlling the airplane elevator as shown in Figure 11 is considered as a model to 
calculate internal forces. For simplicity and without generality, the link (1) is supposed as a bar of 
length l1 and mass m1; the piston rod (2) is a bar characterized by the length l2 and the mass m2; the 
piston body is a plate characterized by the radius R2 and the mass m3; the cylinder (4) is represented 
by radii R1 and R2, the length l4 and the mass m4. 

For more simple in finding out kinematic relations of terms related to Lagrange equations, the 
mechanism being closed-loop will be transferred to open-loop. For that aim, the constraint at O4 is 
replaced by a constraint force acting there. And the constraint force can be considered as the sum of 

two components: the normal constraint force nf


 with the direction along the centerline of the 

cylinder, and the tangent constraint force tf


, with the direction perpendicular to nf


. Both these two 

forces lie in the vertical plane. 

 
Figure 12. Diagram for calculating the normal constrained force 

Supposing the supplementary mobility corresponding to the normal constraint force nf


 is 4v . 
Thus, the generalized coordinates representing completely the considered mechanism are chosen as 

   1 2 1 4, ,q q v  shown in Figure 12. 

 
Figure 13.  Diagram for calculating the tangent constrained force 
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Similarly, for tangent constraint force tf


, the generalized coordinates are     1 2 1 4, ,q q u  as 

shown in Figure 13. 
And for calculating internal forces, we also introduce supplementary displacements 

corresponding to each case as: 
- “s1”, the translation movement in direction perpendicular with center axis of the cylinder (4), 

is the virtual supplementary displacement corresponding to shear force as shown in Figure 14. Thus, 
   1 2 1 1, ,q q s are chosen as generalized coordinates. 

 - “ 3 ”, the rotation movement about the axis perpendicular with vertical plane, is the virtual 

supplementary displacement corresponding to bending moment as shown in Figure 15. Thus, 
   1 2 1 3, ,q q   are chosen as generalized coordinates. 

 
Figure 14. Diagram for calculating the shear force 

  
Figure 15. Diagram for calculating the bending moment 
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After calculating all necessary terms, then applying proposed method, internal forces will be 
obtained easily. And for the aim of simulation, the system for controlling the aircraft elevator is 
given some specified geometric and inertial characteristics as: 

1 2 4 1 2 3 40.5( ) , 1( ) , 1( ); 2( ) , 4( ) , 1( ) , 5( ).l m l m l m m kg m kg m kg m kg        
In the inverse dynamics, the link (1) is imposed by the law of motion expressed as 

 20
1 0 ,( )

2
t t rad


   , (28) 

and the moment rM has the expression 

 
4

1
9.10

, ( )rM Nm


 , (29) 

where 2
0 0, ( / ); , ( / )

180 90
rad s rad s

    . 

Based on the proposed method, the internal forces can be calculated at any position of the 
mechanism and at any time, corresponding to the value of the rotation angle 1 . However, the thesis 

showed results for the special case when 1 0 ( )rad  , with the aim to compare them with the 

results calculated for the static system mentioned below. By using Matlab software, the bending 

moment Mbd, and the shear force F1 with respect to " 1

4
2 2

ll x


   
 

" along the length of piston rod-

cylinder subsystem are released as shown in Figure 16 and Figure 17, respectively. 

 
Figure 16. Variation of the bending moment along the piston rod-cylinder at 1 0  (rad) 

 
Figure 17. Variation of the shear force along the piston rod-cylinder at 1 0  (rad) 



Contribution to Kinematic and Dynamic Study of Rigid Bodies PhD student: Nguyen Thien Van 
 

14 

In order to verify the results above, the system for controlling the aircraft elevator at the 
position 1 0  (rad) is simplified as a static system, which is considered a beam acted by 
distributed and concentrated forces, which are compatible with the given geometric and inertia 
characteristics of the mechanism. Then, by using the section method to compute manually the shear 
force and the bending moment, the results shown in Figure 18 were obtained. 

 

Figure 18. The internal force diagram of the simplified model 

4. Calculus of internal forces in spatial mechanisms 

 
Figure 19. Model for calculating internal forces 
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The spatial serial manipulator as shown in Figure 19 is considered as model for calculating 
internal forces. The mechanism is one kind of the most popular manipulators having three degrees 
of freedom corresponding to three independent angular variables 1q , 2q  and 3q . 

For determining internal forces in end-effector of the mechanism mentioned above by using 
Lagrange equations, kinematic relations of links in the mechanism must be calculated first, in 
particular here is linear and angular velocities. For a long time, Denavit-Hatenberg Convention is 
well-known approach for analyzing kinematic relations between links in robotic field. Besides, this 
section will use also a direct way presented previously to determine kinematic relations of links 
based on positions and orientations of links’ body reference frame. Then results determined in two 
cases are compared each other to verify validity of proposed measure. 

4.1. Calculus of axial force in the end-effector 

For calculating axial force in the rod of end-effector, we must assign coordinates systems for 
links of the mechanism. Once origins and coordinates systems are assigned completely, we can 
choose the independent variables describing the mechanism’s configuration in the most appropriate 
manner. And they are specified and shown more detail in the figures below corresponding to the 
case of analyzing kinematic relations directly or by using Denavit-Hatenberg Convention. 

  
Figure 20. Assigning coordinates diagram for 

calculating axial force directly 
Figure 21. Assigning coordinates diagram for 
calculating axial fore with Denavit-Hatenberg 

 For case analyzing kinematic relations directly, the generalized coordinates representing 
completely for the mechanism are chosen as    1 2 3 4 1 2 3 3, , , , , ,q q q q q u    shown in Figure 20. 

For using Denavit-Hatenberg Convention, the generalized coordinates representing completely 
for the mechanism are chosen as    1 2 3 4 1' 2 ' 3' 3', , , , , ,q q q q q u     shown in Figure 21. 
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After computing terms relating to the Lagrange equations, then applying Eq. (21), the axial 
force in the end-effector is achieved corresponding to each case: 

 

3

3

3

3 0
3 3 3 0

0

2 2 3 3 3 2 3

3 3 3 2 3 2 3 2
13 3 3

2 2 3 3 2 3
3 2
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.
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

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         

  

     
         

   


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

  




2

3 3 3 2 3(2 2 ). 4 .cos( )a g   

 
 
 
 
 
 
 
     

 (30) 

 
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0
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



    
         

   

     
         

 






  



2
3 2 3' 2 '

2
3 3 3' 2 ' 3'

2 4 .cos ).

(2 2 ). 4 .sin( )

a

a g

  
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 
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 
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 
   
     





, (31) 

4.2. Calculus of shear force in the end-effector 

Similarly, for calculating shear force in the rod of end-effector, assignment of coordinates 
systems for links of the mechanism are performed thoughtfully. Then choosing generalized 
coordinates the most compatibly with the case of analyzing kinematic relations directly or by using 
Denavit-Hatenberg Convention is shown in figures below. 

For case analyzing kinematic relations directly, the generalized coordinates are chosen as 

   1 2 3 4 1 2 3 3, , , , , ,q q q q q S    shown in Figure 22. 

For using Denavit-Hatenberg Convention, the generalized coordinates are chosen as 

   1 2 3 4 1' 2 ' 3' 3', , , , , ,q q q q q S     shown in Figure 23. 
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Figure 22. Assigning coordinates diagram 
for calculating shear force directly 

Figure 23. Assigning coordinates diagram for 
calculating shear fore with Denavit-Hatenberg 

After computing terms relating to the Lagrange equations, then applying Eq. (21), the shear 
force in the end-effector is achieved corresponding to each case: 
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, (33) 

4.3. Calculus of bending moment in the end-effector 

For case analyzing kinematic relations directly, the generalized coordinates are chosen as 

   1 2 3 4 1 2 3 3, , , , , ,q q q q q      shown in Figure 24. 

For using Denavit-Hatenberg Convention, the generalized coordinates are chosen as 

   1 2 3 4 1' 2 ' 3' 3', , , , , ,q q q q q       shown in Figure 25. 

 
 

Figure 24. Assigning coordinates diagram for 
calculating bending moment directly 

Figure 25. Assigning coordinates diagram for 
calculating bending moment with D-H 

After computing terms relating to the Lagrange equations, then applying Eq. (21), the bending 
moment in the end-effector is achieved corresponding to each case: 
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5. Controlling motion of a spatial 4-DOF manipulator 

5.1. Simulating model and equations of motion 

 
Figure 26. The 4-DOF manipulator 

For our purpose of giving control law of a mechanism, let’s consider the 4-DOF articulated 
manipulator as shown in Figure 26. The first link (1) characterized by length 1d  and mass 1m  is 
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subjected to the external torque 1 , which has its effect in horizontal plane, at the point O0. 

Analogously, the links (2), (3) and (4) characterized by lengths 2a , 3a , 4a  and masses 2m , 3m , 

4m , are actuated by the external torques 2 , 3 , 4 , which have their effects in vertical plane, at 

the points O1, O2, O3, respectively. 
As shown, the manipulator has four degrees of freedom, thus let’s choose angle vector 
 1 2 3 4, , ,     , in which the angles are assigned according to DH Convention, as the 

generalized coordinates. Then the equations of motion are written easily using Lagrange equation: 

d
, ( 1, 2, 3, 4)

d i
i i i

E E U
Q i

t   
   

        , (36) 

where E  is the total kinetic energy of mechanism,  
 U  is the force function, 

 *
iQ  is the external generalized force acting on the link i, in this case * ( 1,2,3,4),i iQ i  . 

From geometric and kinematic relationship between the links of the manipulator, after 
computing all necessary terms then replacing them into Eq. (36), the equations of motion are 
obtained in matrix form as following: 

  Aθ B τ , (37) 

where 1 2 3 4, , ,
T

      θ      is the vector of second time derivative of the joint coordinates, 

  1 2 3 4, , , T   τ  is the external torque vector acting on the links at the points O0, O1, O2, 

and O3, respectively, 

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

a a a a

a a a a

a a a a

a a a a

 
 
 
 
 
 

A  is the inertia matrix. 

5.2. Determining optimal parameters of PID controllers by using the GA 

Let’s consider one simple example: Control the tip of end-effector of the 4-DOF manipulator 
above  to follow the specified trajectory on surface of cone in the plane Oxyz written in the function 
as following:  

 2 2 0.25 ( )x y z m   , (38) 

Or it can be written in form with respect to time as: 

 

2 2 0.25 1 0,25. 1 ( )
20

0.25 0,25. ( )
20

o

f o

o

f o

t t t
r x y m

T t

t t t
z m

T t

                  
   

, (39) 

in there, r represents the radius, 
 z represents the height, 
 0, 20 ( )o ft T s   are the initial and final times of the analysis process. 

There are many methods to control the 4-DOF manipulator, but in this case we use PID 
controllers to control the manipulator thanks to their simplicity and transparence. As known, one of 
the most common difficulties when using the PID controllers is to determine the optimal 
parameters, i.e: the proportional gain PK , the integral gain IK , and the derivative gain DK  



Contribution to Kinematic and Dynamic Study of Rigid Bodies PhD student: Nguyen Thien Van 
 

21 

because of the constantly changing of the system parameters in almost all processes. To overcome 
that tough issue, a GA is used for finding out parameters of PID controllers. The block diagram of 
our control system using the GA for determining the optimal PID parameters is shown in Figure 27. 

 
Figure 27. PID tuning diagram with the GA 

 

Figure 28. Completed scheme of 4-DOF manipulator with PID controllers 

For the simulation purpose, let’s consider that the 4-DOF manipulator has the following inertial 
and geometric data: 1 2 3 4 1 2 3 40.1( ); 0.1( ); 0.13( ); 0.04 ( )m m m m kg d m a a m a m         
and that the initial state of the manipulator considered in the case study is 
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Using Mathlab software, and after applying GA for tuning PID controllers in our system, the 
values of , ,Pi Ii DiK K K  (i=1, 2, 3, 4) are determined as: 

pid
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1 1 1

2 2 2

3 3 3

4 4 4

26.7600; 1.1200; -0.2500;

19.4350; 21.2450; -0.7900;

0.8100; 0.1950; -0.2850;

0.0160; 0.0070; -0.0020.
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  

 

The results obtained from Simulink model (and also SimMechanics model) corresponding to 
the above value of PID parameters are shown below. 

 
Figure 29. Evolution of the joint coordinates 1 2 3 4, , ,     versus real time 

 
Figure 30. Evolution of the external torques 1 2 3 4, , ,     versus real time 

 
Figure 31. Position error of the end-effector in real time 
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With the aim of illustrating how well the manipulator performed the given task with computed 
value of PID parameters, the position error showing the difference between real position of the end-
effector and its desirable position is considered, and is defined by: 

  
2 22 2 es 2 es 2( ) ( ) ( ) ( ) ( ) ( ) ( )real real d d real des

C C C C C C Ct x t y t x t y t z t z t        
 

, (40) 

where ( )C t  is square root of square position error, 

 ( ), ( ), ( )real real real
C C Cx t y t z t  are real coordinates of the end-effector on axes with respect to time, 

 ( ), ( ), ( )des des des
C C Cx t y t z t  are desirable coordinates of the end-effector on axes with respect to 

time. 
As shown in Figure 31, the position error of the end-effector remains in the range of [0; 0.25 

mm]. In practice, this error is due to accumulation errors and is acceptable, taking into account the 
length of trajectory of the 4-DOF serial manipulator. This error can be reduced by improving the 
GA program to give the better solutions of the PID parameters. 

6. Conclusions and Future Works 

Based on the fundamental definitions of rigid body mechanics, this thesis presented a new 
method derived from Lagrange equations to calculate internal forces in an arbitrary link in a rigid 
body system. This work is really significant, especially for a complex rigid body system possessing 
many links due to without considering constraint forces in calculating process. From the proposed 
method, the thesis calculated internal forces in closed mechanism as well as in open one. Besides, 
the thesis also applied Genetic Algorithms in tuning parameters of PID controllers to control a 4-
DOF mechanism to perform a given task. 

The models used in this thesis ignored friction force, damping force… during calculating 
process, so we can take into account the effect of friction in the contact surfaces between links, as 
well as effect of damping force in hydraulic cylinder in order to make it close to practice. 

Modeling and simulating the mechanism on dynamic software such as ADAMS with the 
identical conditions applied, then calculating the load and stress distributed throughout the 
mechanism. Based on that, we compare with the results obtained by proposed method. 

Considering the mechanism again, we apply the proposed method to compute internal forces. 
Then comparing results obtained in two ways. 

For controlling model, we can improve the genetic algorithm in order to tune the PID 
parameters faster and to get better control quality, i.e the position error of the tip of end-effector is 
reduced and smaller than the result achieved above.  
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