

Process Systems Engineering and CAPE – What Next?

Rafiqul Gani CAPEC, Department of Chemical Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark & Ignacio E. Grossmann CAPD, Department of Chemical Engineering Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

Carnegie Mellon

PSE: Use of a systematic approach to problem solving!

CAPE: Use of computer aided and systematic approach to solving process engineering problems!

Scope & Significance of PSE/CAPE is potentially very large and depends on the application range of the developed solution approaches.

Takamatsu (1982), Sargent, (PSE meeting, 1982)

Carnegie Mellon

Outline

- Role, scope & challenges for PSE/CAPE
- The "basic" products of PSE/CAPE
- The framework for problem solving in PSE/CAPE
- Future research challenges in CAPE/PSE
 - Product-process synthesis, design, analysis
 - Energy & sustainability
 - Enterprise-wide optimization
- Remaining challenges in core PSE/CAPE
- Concluding remarks

Current trends in application of Chem Eng

Making chemistry work for the benefit of modern society

Carnegie Mellon

Role, Future Scope & Challenges for PSE/CAPE?

1. What is the role of Process Systems Engineering in "commodity" industry vs. "new emerging" technologies?

Value preservation vs. Value creation

2. What is the future scope for fundamental contributions in Process Systems Engineering ?

Engineering vs. Science

3. What are Research Challenges in Process Systems Engineering? Managing Complexity

Carnegie Mellon

Trade-offs: Value preservation vs. Value growth *Chemicals/Fuels vs. Pharmaceutical/Biotechnology*

Major real world challenges *Globalization, energy, environment, health*

⇒Expand the scope of PSE/CAPE

Research trend away from Chemical Engineering *Science vs Engineering*

⇒Maintain core of PSE research

Carnegie Mellon

Trade offs: Value preservation versus value growth *Continuous processes versus batch operations Low value – high rate or high value –low rate?*

Wider scope of Chemical Engineering, PSE/CAPE *Chemicals: Simple/small versus large/complex Products: Single function versus multifunction-structured*

Major real world challenges

Process-product performance: single criterion versus multicriteria Integration: Process-product; methods; tools; Sustainability: Economic versus economic-social-environmental

⇒Need to expand the scope of PSE/CAPE from a solid foundation of the core!

Example: Expanding the Scope in Chemical Supply Chain

Carnegie Mellon

Example of multiscale: From "Bulk" to "Molecular" Processing

George Stephanopoulos (2004)

Math Programming & Control Theory "competitive" advantage

Carnegie Mellon

Numerical analysis => Simulation => Behavior of process-product Mathematical Programming => Optimization => Synthesis/design Systems and Control Theory => Process Control => Manufacture Computer Science => Advanced Info./Computing => Efficient problem solving **Management Science => Operations/Business => Supply chain**

What is necessary is models of various types, forms and application range

The role of models in PSE/CAPE

Computer aided modelling framework

Carnegie Mellon

Plenary Lecture, ESCAPE-17, Bucharest, Romania, 27-30 May 2007

13

Framework for problem solving in PSE/CAPE

Future Research Challenges in PSE

- I. Product and Process Synthesis, Design, Analysis
- **II. Energy and Sustainability**
- **III. Enterprise-wide Optimization**

Raw Materials to Consumer Products Ka Ng (2006)

Natural Herbs to Healthcare Products Ka Ng (2006)

I. Product and Process Synthesis, Design, Analysis

Extend scope through predictive constitutive models

Gonzalez et al. A method for prediction of UNIFAC group interaction parameters, AIChE J (2007)

Carnegie Mellon

Use of the Model-Based Reverse/Inverse Approach

Wide range of process-product design problems can be solved:
Process design (attainable regions, heat/mass integration,)
Product design (solvent selection, structured chemicals,)
Retrofit design (sustainable process, product-process match,)

Carnegie Mellon

Example: Reverse problem with extend property models

Apply CAMD techniques for solvent selection/design for separation and extraction

(Solution approach needs: Models, IT, computer science, optimization)

Extend to applications in pharmaceutical, agrochemical, health-care, etc. industries - organic synthesis, product recovery, process development, ..., extended property models Carnegie Mellon Plenary Lecture, ESCAPE-17, Bucharest, Romania, 27-30 May 2007

Example: Metabolic Networks: Inverse Problem

Carnegie M

De Novo Protein Design (Chris Floudas, Princeton)

Define target template

Backbone coordinates for N,Ca,C,O and possibly Ca-Cb vectors from PDB

Human b-Defensin-2 hbd-2 (PDB: 1fqq)

Approach

In silico sequence selection => MILP Fold specificity => Global optimization

=> New improved inhibitors

Design folded protein

Which amino acid sequences will stabilize this target structure ?

Full sequence design

Combinatorial complexity

-Backbone length : n -Amino acids per position : m mⁿ possible sequences

(Klapeis, Floudas, Lambris, Morikis, 2004)

Product – **Process: Synthesis - Design** d'Anterroches (2006)

CAMD

CAFD

Carnegie Mellon

PURGE 4------

Recycle

Recycle

(iAD)(rAD/pABCDE)<1<2(fAB/ABCDE)1[(AB/CDE)(oAB)](C/DE)[oC)](D/E)2(oE)

(H2)(1)<1(H2I)2(5)4<3(1)>1<6<5[(3)[(N2I)3]<(n2)](6)[NH1)(9)5<2(NH3I)(11)6(NH3)]<(N2H2I)<4

 $H_2 + l \rightleftharpoons H_2 l$

 $H_2l + l \rightleftharpoons Hl + Hl$

(2)

Common Notation System for Molecule, Reaction & Flowsheet

II. Energy and Sustainability: Role of PSE/CAPE

Spyros Pandis (Carnegie Mellon/Patras)

Atmospheric VOC NO Chemistry Sunlight Photochemical Oxidation PM SO. NH. Nitrates Sulfates Condensible Organics Ozone econdary Fine Particulate Matter **Primary Fine** Water Vapor Acid aerosols Particulate Matter Ammonium sulfate Ammonium nitrate Organics Total Fine Particulate Visibility Matter David Allen (U. Texas)

Sustainable Integrated Systems

Carnegie Mellon

Growing World Energy Demand Fossil Fuels Dominate Energy Consumption

Courtesy: S. Zitney, NETL

Plenary Lecture, ESCAPE-17, Bucharest, Romania, 27-30 May 2007

28

Future: Biorefineries ?

Energy Optimization of Corn-based Bioethanol

Peschel, Martin, Karuppiah, Grossmann, Zullo, Martinson (2006)

Superstructure of a Bio-ethanol Plant

Required operations

Molecular Sieves vs Corn Grits

Alternatives for Energy Reduction

Simultaneous Optimization

Energy Profiles in Multieffect Columns

Beer Column

Carnegie Mellon

Plenary Lecture, ESCAPE-17, Bucharest, Romania, 27-30 May 2007

34

Synthesis of Integrated Process Water Systems

Karuppiah, Grossmann (2006)

- * WATER \rightarrow One of MOST IMPORTANT raw materials used in process industry
- Water becoming scarce
 More stringent regulations for wastewater disposal

(Dudley, 2003)

- * Pressure on process industry for efficient use of water and disposal of wastewater
- ♦ Wastewater reuse, recycle → Options to reduce Freshwater consumption

GOAL:

GLOBAL OPTIMIZATION method for INTEGRATED DESIGN of Water Using and Water Treating Units

Conventional Water Network

 ◆ PU1, PU2 and PU3 ⇒ Process Units using water PU1 → Scrubber PU2 → Washing unit PU3 → Desalter

 ★ TU1, TU2 ⇒ Water Treatment units TU1 → Oil separator TU2 → Centrifuges/ Filtration units

• FRESHWATER consumed = 150 ton/hr Global minimum = 40 ton/hr

Superstructure for integrating Water Using/Treating Units

Carnegie Mellon

Superstructure of Integrated Water System

 Generalize superstructure development to system with arbitrary number of Process / Treatment Units

To M2 PU1 S2 M4 TU1 S5 ́М1 in of TO M2 -Discharged Freshwater S3 S1 PU2 M5 TU2 M2 S6 M7 into environment (МЗ PU3 S4 M6 S7 TU3 To MA

Example : 3 Process Unit - 3 Treatment Unit system

 Superstructure is formulated as a Non-Linear Programming (NLP) problem (Bilinear) and solved with novel global optimization algorithm

Carnegie Mellon

III. Enterprise-wide Optimization

Beyond the plant level/ Integration with business operations

EWO involves optimizing the operations of R&D, material supply, manufacturing, distribution and financial activities of a company to <u>reduce costs and inventories</u>, and to <u>maximize profits, asset utilization, responsiveness and</u> <u>customer satisfaction</u>.

Key features:

-Integrate <u>strategic</u>, <u>tactical and operational</u> decision-making -Integration of the <u>information</u>, <u>modeling and solution</u> methods

Methods/Tools for Enterprise-wide Optimization

Scope of Enterprise-wide Optimization

Colin Gardner (Transform Pharmaceuticals)

Carnegie Mellon

Simultaneous Tactical Planning and Production Scheduling

<u>Goal:</u> Improve the asset utilization of geographically distributed assets and reduce cost to serve by improving enterprise wide tactical production planning.

<u>Multi-scale optimization:</u> temporal and spatial integration

Approaches to Planning and Scheduling

Decomposition

Sequential Hierarchical Approach

Challenges:

- Different models / different time scales
- Mismatches between the levels

Simultaneous Planning and Scheduling

Erdirik, Grossmann (2006)

Detailed scheduling over the entire horizon

- Very Large Scale Problem
- Solution times quickly intractable

GOAL: Multi-scale decomposition algorithm to <u>integrate planning and scheduling</u> to ensure optimality and consistency between the two levels.

Planning and Scheduling of Continuous Plants

- **Multiproducts** to be processed in a single **continuous** unit/production line
- Time horizon subdivided into weeks at the end of which demands are specified.
- Transition times are sequence dependent
- **Continuous** time representation is used.

- Amounts to be produced
- Length of processing times
- Product inventories
- Sequencing of products

Objective

• Max Profit = Sales – Operating Costs – Inventory Costs – Transition Costs

Proposed Decomposition Algorithm

Scheduling Crude Oil Movements Refinery Front-end

Karuppiah, Furman, Grossmann (2006)

- Scheduling and Planning of flow of crude oil is key problem in petrochemical refineries
- Large cost savings can be realized with an optimum schedule for the movement of crude oil

Crude-Distillation Unit

Global MINLP

Optimization

How to coordinate discharge of vessels with loading to storage? How to synchronize charging tanks with crude-oil distillation?

Carnegie Mellon

Stochastic MINLP model for planning of oil fields under uncertainty

<u>Goal:</u> improve the decisions about development planning under uncertainty

FPSO and TLP

<u>FPSO</u>: (Floating Production Storage Offloading)

- Small FPSO, converted from oil tanker
 - Low capacity
 - Costs less
 - Short construction time
- > Large FPSO, grassroots facilities
 - High capacity
 - Costs more
 - Long construction time

<u>TLP</u>: (Tension-Leg Platform)

Cannot produce oil, only drilling and oil recovering capability

Pictures taken from:

- (1) <u>www.wikipedia.org</u>
- (2) <u>www.search.com</u>

Drilling Options

Sub-sea well:

- > Can be drilled at any time
- Connect to FPSO facility

TLP well:

- > Need TLP facility to drill
- Connect to TLP facility

Pictures taken from:

(3) www.offshore-technology.com

(4) www.aas-jakobsen.no

Model Decisions and Uncertainty

- The aim is to simultaneously optimize the investment and operation decisions under uncertainty over the entire project horizon.
 - How many FPSO/TLP
 - Capacity of facility
 - Time to build
 - How many wells to
 - Sub-sea/TLP well
 - Production rate

Uncertainty:

- Sand quality (PI)
- Size of reservoirs
- > Breakthrough time

Maximize the expected net present value of the project

What about core Process Systems Engineering topics?

Are there challenges remaining in...?

Modeling* Optimization Process Synthesis/Design* Process Operations Process Control

Above areas represent <u>core body</u> <u>of knowledge</u> in PSE (*ie fundamentals*)

* Some of the challenges in these topics pointed out in part I

Carnegie Mellon

Mathematical Programming

Given a <u>space of alternatives</u> that are specified through constraints in a mathematical model <u>select decision variables</u> to optimize an objective function

$$\min Z = f(x, y)$$

s.t. $h(x, y) = 0$
 $g(x, y) \le 0$
 $x \in R^n, y \in \{0,1\}^m$

MINLP- Mixed-integer Nonlinear Programming

Carnegie Mellon

Progress in Linear Programming

Increase in computational speed from 1987 to 2002

Bixby-ILOG (2002)

For 50,000 constraint LP model

Algorithms Primal simplex in 1987 (XMP) versus Best(primal,dual,barrier) 2002 (CPLEX 7.1) 2400x

Machines Sun 3/150 Pentium 4, 1.7GHz

800x

Net increase: Algorithm * Machine ~ 1 900 000x

Two million-fold increase in speed!!

Carnegie Mellon

Applications of Mathematical Programming in Chemical Engineering

Major contribution:

new problem representations, models & solution strategies

Carnegie Mellon

Contributions by Chemical Engineers to Mathematical Programming

Large-scale nonlinear programming SQP algorithms Interior Point algorithms

Optimal control problems *NLP-based strategies*

Mixed-integer nonlinear programming Outer-approximation algorithm Extended-Cutting Plane Method Generalized Disjunctive Programming

Global optimization *α-Branch and Bound Spatial branch and bound methods*

Optimization under Uncertainty

Parametric programming

Carnegie Mellon

Generalized Disjunctive Programming

GDP Model: Raman and Grossmann (1994):

$$\min \ Z = \sum_{k} c_{k} + f(x) \qquad \text{Objective Function}$$

$$s.t. \ r(x) \leq 0 \qquad \text{Common Constraints}$$

$$\bigcap_{j \in J_{k}} \begin{bmatrix} Y_{jk} \\ g_{jk}(x) \leq 0 \\ c_{k} = \gamma_{jk} \end{bmatrix}, k \in K \qquad \text{Constraints}$$

$$\widehat{P}(X) \leq 0 \qquad Fixed Charges$$

$$\widehat{P}(Y) = true \qquad \text{Logic Propositions}$$

$$x \in R^{n}, c_{k} \in R^{1} \qquad \text{Continuous Variables}$$

$$Y_{jk} \in \{true, false\} \qquad Boolean Variables$$

Concluding Remarks

Process Systems Engineering is a vibrant area of research *Theory, Models, Algorithms, Applications*

Driven by Industrial Needs!!

Process Systems Engineering well-positioned to support : *Value preservation Value growth*

Process Systems Engineering requires as next step to balance: Expanding scope Maintaining core

Carnegie Mellon

57

Concluding Remarks

Emerging challenges in Process Systems Engineering

Product and Process Design Energy and Sustainability Enterprise-wide Optimization

+

Fundamental Challenges in Process Systems Engineering Modeling Optimization Process Synthesis/Design Process Operations Process Control

Carnegie Mellon

Plenary Lecture, ESCAPE-17, Bucharest, Romania, 27-30 May 2007

58