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Chapter 1.  Preliminaries and Tools – Literature Survey 
 
1.1. An Introduction to Distillation  
 
1.1.1. Motivation  
 
Most of the chemical industrial processes consist of two basic tasks: chemical reaction and 
product separation. In contrast to the frequent opinion that separation is the less substantial task 
of both, Humphrey (1995) adequately stresses the economical and ecological importance of the 
separation task:  
“Separation processes are the main cog in the manufacturing wheel of the chemical process 
industries. They are used for such essential chores as removal of contaminants from raw 
materials, recovery and purification of primary products, and elimination of contaminants from 
effluent water and air streams.” Distillation is the most used separation process and it represents 
a point of reference in the comparison with the other alternatives that can be approached; 
although it has a very good performance, it requires the consumption of high amounts of energy. 
The key of any separation process is its primary mass-separating agent, which can be an 
additional chemical species (as for absorption, extraction, and stripping processes), a membrane 
(membrane separations) or energy in form of heat (as for distillation or crystallization). By 
definition, distillation processes separate chemical components of a fluid mixture based on their 
different boiling points by adding and removing heat for evaporation and condensation.  
Distillation is the most common unit operation in the chemical process industries. It has an 
extensive product history and is still reported as “the method of choice for many separations and 
the method against which other options must be compared” (Kunesh et al., 1995; Kister, 1997). 
Humphrey’s (1995) estimates for the United States consist of 40’000 distillation columns in 
operation, which handle more than 90% of all separations for product recovery and purification. 
The capital investment for these distillation systems is reported to be at least 8·109 US$. Since 
distillation is by far the dominant separation process, the reader is referred to the literature 
mentioned for a detailed treatment of its advances.  
The motivation for research in distillation originates from its serious drawbacks: Distillation 
columns tend to use huge amounts of energy because of the evaporation steps involved. 
Typically, more than half of the process heat distributed to plant operations ends up in the 
reboilers of distillation columns (Kunesh et al., 1995). By this, high-level energy is fed at the 
base of the column and about the same amount of energy is released at the top, unfortunately at a 
much lower temperature level. The difference between the two Gibbs energies can be seen as the 
necessary energy investment to reverse the mixing entropy and to separate the components of a 
given feed by a distillation process (Kaibel and Blass, 1989). Often, the energy feed cannot be 
used for heat integration but is discharged to the atmosphere.  
 
1.1.2. Zeotropic Distillation  
 
The driving force for any separation by distillation is the difference between the compositions of 
a component in the liquid phase, xi , and the vapour phase in equilibrium, yi .In vapour-liquid 
equilibrium (VLE, bubble—point formulation), the vapour composition y and the bubble-point 
temperature T are implicit functions of the liquid composition x and the system pressure p:  
 
[ ] ),(, pxVLETy =            (1.1)  
 
If yi >xi for any component in the mixture, this component is enriched in the vapour phase. As 
long as the inequality holds, the component can be further purified in the vapour by repeatedly 
evaporating a part of the liquid followed by condensation of the resulting vapour until, 
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theoretically, the pure component is obtained. If the driving force, x — y(x), is zero for some 
composition x, a singular point of the vapour-liquid equilibrium relationship is obtained. 
Obviously, pure components, where only one species is present, belong to the set of singular 
points of a mixture. If this set only consists of all pure components of the entire physical 
meaningful composition space, the mixture is called to behave zeotropic. Theoretically, any 
given feed composition of such a mixture could be separated into its pure components by means 
of distillation (although an infinite amount of energy or capital investment may be needed), since 
it is always possible to enrich one component in the vapour and reduce its fraction in the liquid.  
A c-component mixture is called ideal if both the liquid and vapour phase are ideal mixtures of 
ideal components. Thus, the partial pressure of component i, pi, in the vapour phase is 
proportional to its mole fraction in the vapour phase (Dalton’s Law), and proportional to its mole 
fraction in the liquid phase (Raoult’s Law). A McCabe—Thiele diagram of a binary ideal 
mixture is shown in Figure 1.1a. Zeotropic mixtures not following Raoult’s Law are denoted 
non-ideal mixtures (Figure 1.1b). The separation of ideal multicomponent systems has been topic 
of intensive research and most of the results can be found in standard chemical engineering 
textbooks.  
 
1.1.3. Azeotropic and Reactive Distillation  
 
Azeotropes are singular points in the VLE relationship (1.1) beside of the pure components. 
They are denoted binary, ternary or quaternary (etc) according to the number of components 
involved. Since the driving force is zero at azeotropic points, azeotropes cannot be separated by 
conventional distillation. An azeotrope is called minimum-boiling if its boiling point temperature 
is lower than those of all pure components involved (Figures 1.1c and d). Maximum and 
intermediate boiling azeotropes are defined in a straightforward manner.  
The problem of separating binary azeotropic mixtures has lead to enhanced distillation 
techniques (Stichlmair et al., 1989). If pressure-swing distillation cannot be used to shift the 
composition of the azeotrope (Fien and Liu, 1994), there are four basic methods remaining to 
separate a binary azeotrope through distillation (Laroche et al., 1991). Depending on the action 
of the additional component, the entrainer, which is introduced as an extra mass separating agent 
(despite of heat), the following process types can be distinguished:  
Salted Distillation: The entrainer dissociates into ions and changes the chemical potential and 
thus the azeotropic composition in the solution. This process type allows an azeotropic mixture 
to be separated in a column sequence.  
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Figure 1.1: Illustrations of the VLE of binary mixtures. McCabe--Thiele diagrams of (a) 
an ideal zeotropic mixture, (b) a non--ideal zeotropic mixture, and (c) a minimum boiling 

azeotropic mixture. (d) shows the T --x,y diagram of the azeotropic mixture. 
 
Heterogeneous Azeotropic Distillation: The entrainer induces a phase-split and introduces a 
heterogeneous azeotrope with one of the original components. This azeotrope must be lower 
boiling than the azeotrope to separate in order to make the separation in a decanter feasible.  
Homogeneous Azeotropic Distillation: The entrainer does not induce a phase-split and the 
mixture remains homogeneous, i.e., there is a single liquid phase throughout the composition 
space. If the entrainer does not introduce additional azeotropes, the following three general 
separation schemes exist, depending on the boiling point of the entrainer (Laroche et al., 1991; 
1992a; 1992b):  

Heavy Entrainer: The entrainer is the heaviest boiling component in the system. This 
process is also known as extractive distillation and is widely spread in industry.  
Intermediate Entrainer: The entrainer is intermediate boiling compared to the two 
components forming the azeotrope.  
Light entrainer: The entrainer is the lightest boiling component in the system and 
introduces a curved boundary. These separation schemes can be generalized if the 
entrainer introduces additional azeotropes.  

Reactive (Catalytic) Distillation: The entrainer undergoes reversible chemical reactions with one 
or more of the other components present (or acts as a catalyst for a reaction), thereby overcoming 
the azeotrope.  
Azeotropic distillation is one of the most widely used and important separation processes in the 
chemical and specialty chemical industries. Moreover, reactive distillation has gained increasing 
importance during the last decade. Among the surprising features of both azeotropic and reactive 
distillation, multiple steady states have been discovered.  
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1.2. Multiple Steady States  
 
1.2.1. Definition of Multiplicities in Distillation  
 
Definition 1 (Multiple Steady States in Single Columns:) By multiple steady states (MSS) in a 
distillation column we refer to output multiplicities, i.e., that a column of a given design exhibits 
different column profiles (and therefore different product compositions) at steady state for the 
same set of inputs and the same values of the operating parameters.  
For a given column design (number of stages, feed locations, column pressure, type of condenser 
and reboiler), a given feed flowrate F, composition xF and quality (e.g. temperature TF ), there 
are two degrees of freedom for a homogeneous two-product distillation column (Figure 1.2 and 
Appendix B). If the distillate flowrate D and the reboiler heat duty Qr are selected as the 
operating parameters, more than one steady state may exist in terms of the product compositions 
xD and xB (the outputs) for given values of D and Qr (the inputs). This phenomena is denoted an 
output multiplicity and will be referred to as multiple steady states (MSS) hereafter.  
Note that MSS belong to the general mathematical notion of multiplicities, where a system of 
equations with as many parameters specified as there are degrees of freedom exhibits different 
solutions at steady state. Additionally, two different types of multiplicities can be found in the 
distillation literature (Jacobsen and Skogestad, 1991; Bekiaris et al., 1993):  
Input multiplicities: If a column of a given design with given feed (F, xF, TF) exhibits input 
multiplicities, the same product compositions xD and xB can be achieved for different values of 
the operating parameters (e.g. D and Qr, Figure 1.2). This type is quite frequent in azeotropic and 
reactive distillation and has mainly economical importance (Laroche et al., 1992b). 

 
Figure 1.2: A homogeneous, two-product distillation column. 

 
(Internal) state multiplicities: State multiplicities are a special case of output multiplicities 
where more than one solution with identical product compositions xD and xB exist for the same 
inputs and operating parameters. These solutions do only differ by the column profiles 
(excluding the products).  
In general, MSS can exist in a single apparatus, e.g. a distillation column, or they can occur in 
interlinked columns or column sequences (Vadapalli and Seader, 1997). Note that MSS are also 
known in chemical reactors for specific exothermic reactions (Schmitz, 1975), e.g. in the 
industrial production of ammonia (Morud, 1996).  
 
1.2.2. Multiplicities and the Column Configuration  
 
Definition 1 (MSS) is formulated from a mathematical, steady-state point of view. In terms of 
control, any homogeneous distillation column can be viewed as a 5-by-5 multiple-input- 
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multiple-output system (Figure 1.2). Five manipulated variables (e.g. L, D, B, Qr and Qc ) can be 
used to control the column pressure, the levels of the reflux drum and the reboiler as well as all 
the product compositions (Jacobsen et al., 1991). The feed flowrate, composition and quality are 
assumed to be given. They act as the major source of disturbances.  
The set of the two operating parameters selected to control the product purity is denoted by the 
configuration of a distillation column – the remaining three operating parameters are needed to 
stabilize the levels of the reflux drum and the reboiler, and to control the pressure (or the 
operation of the condenser). Assume that the pressure at the top of the column is given and that 
perfect pressure control is achieved. Configurations are indicated by squared brackets, e.g. [DM , 
Qr ] is the configuration where the distillate flowrate (on a mass basis) and the reboiler heat duty 
are used for operating the distillation column.  
Again, perfect control is assumed for the two remaining loops manipulating L and B to stabilize 
the levels. As a consequence, the existence of MSS as defined above fundamentally depends on 
the column configuration.  
 
1.3. Tools for Distillation Design and Analysis  
 
1.3.1. Simple Distillation Residue Curves  
 

 
 

Figure 1.3: Batch still for an open—evaporation process (simple distillation). 
 
The first reports about simple distillation residue curves have been published early in this 
century (Ostwald, 1900; Schreinemakers, 1901). Since then, residue curves have become the 
standard tool for design and analysis of azeotropic distillation columns. Recent reviews have 
been published by Fien and Liu (1994) and Widagdo and Seider (1996).  
Consider the batch still shown in Figure 1.3 where an open evaporation process (simple 
distillation) takes place. The still is loaded with an initial amount M(t= 0) of moles of liquid with 
composition x(t = 0). It is assumed to be perfectly mixed. By gradual heating, the vapour y in 
equilibrium with x is continuously removed. A residue curve is defined as the locus of the liquid 
composition x(t) remaining at any given time t in the still (the “residue”). A material balance 
provides (Doherty and Perkins, 1978a; Westerberg and Wahnschafft, 1996):  
 

( )

V
dt

dM

1)-1..(ci      Vy
dt
dx

M
dt

dMxMx
dt
d

i
i

ii

−=

=−=+=
      (1.2) 

 
Combining these two equations one gets:  
 

( ) ( ) ( )( ) 1)-1..(ci       xyxtV
dt
dx

tM ii
i =−=        (1.3) 
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Since the vapour flow V(t) is an arbitrary (but strictly positive) function of time (the heating 
policy), the differential equation is non-autonomous. In order to obtain an autonomous 
formulation, the dimensionless “warped” time ξ is introduced (Doherty and Perkins, 1978a):  
 

( ) t
tM
tV

tM
Mt

)(
)(

)(
)0(ln =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=ξ          (1.4) 

 
resulting in the final formulation:  
 

1)-1..(ci    xyx
d
dx

ii
i =−= )(
ξ

        (1.5) 

 
Since V(t) > 0, M(t) decreases in time (equation 1.2). By equation (1.4), ξ(t) is monotonically 
increasing as a function of time. By convention, increasing time is used as the direction of the 
residue curves. Although residue curves of homogeneous mixtures have been established to point 
in direction of increasing temperature, this result is questionable for heterogeneous mixtures 
(Doherty and Perkins, 1978a; Pham and Doherty, 1990). The other results presented here can be 
applied to heterogeneous mixtures by replacing the two-phase VLE with a three-phase VLLE 
calculation.  
From a mathematical point of view, equations (1.5) represent a system of nonlinear, autonomous 
ordinary differential equations (ODE’s), which can be integrated over the dimensionless time ξ. 
The resulting solution trajectory of the system is a single residue curve.  
 
1.3.2. Distillation Lines  
 
Unfortunately, distillation lines, which have first been reported in the Russian literature (Zharov, 
1968; Zharov and Serafimov, 1975), are not uniquely defined. However, the concept originates 
from the description of tray columns operated at total reflux. Zharov and Serafimov (1975) 
define a distillation line as the set of points x whose vapour composition in equilibrium, y(x), 
also lies on the same line. Exact distillation lines are hard to obtain, but a sequence of points 
lying on the same line can be calculated applying the following recursion formula forward and 
backward (Stichlmair et al., 1989; Stichlmair and Herguijuela, 1992):  
 

)()(1 tttt xVLExyx ==+          (1.6) 
 
Distillation lines are not coinciding with residue curves but have very similar properties – 
detailed comparisons have been given by Bekiaris et al. (1996) and Widagdo and Seider (1996). 
Distillation lines and residue curves exhibit identical singular points and behave similarly in the 
vicinity of those points (Zharov and Serafimov, 1975).  
 
1.3.3. Topological Classification of Residue Curve Maps  
 
A residue curve (RC) map is a plot of several residue curves in the phase diagram and illustrates 
the basic properties of the vapour-liquid equilibrium (VLE). For ternary mixtures, the phase 
diagram is the unit triangle (a two-dimensional simplex); for quaternary mixtures the unit 
tetrahedron (three-dimensional simplex). 
Apart from experimentally using the simple batch still, we can also generate RCs 
mathematically, by integrating the mass and energy balances and thermodynamic equilibrium 
relationships that describe this simple still. Vertices are the so-called “singular solutions of these 
mathematical expressions and the collective topological name for azeotropes and pure 
components. 
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In the case of ternary azeotropic systems, the presence of azeotropes divides the triangular 
diagram into separate distillation regions by introducing “distillation boundaries”. The binary 
azeotropes are located on the edges of the triangular diagram, while ternary azeotropes are 
located inside the triangle. Minimum-boiling azeotropes have a lower boiling point than that of 
any of the components involved, while maximum-boiling azeotropes have a higher boiling point. 
Much theoretical research has been conducted to investigate azeotropy in multicomponent 
mixtures, notably in a series of papers by Doherty and Perkins (1978a,b, 1979a, 1982) and by 
Van Dongen and Doherty (1984). Others (Gani, 1993; Matsuyama and Nishimura, 1977) have 
applied the field of mathematical topology and index theory to find relationships in RCMs, 
leading to the theory of “nodes and saddles”. This theory suggests some heuristic guidelines for 
the construction of fairly accurate RCMs from minimal data. These data include the boiling 
temperatures of all components in the mixture, as well as the boiling temperatures and 
compositions of all occurring azeotropes. Applying the heuristic guidelines, in most cases, 
enables us to construct RCMs, without requiring the explicit numerical integration of component 
mass/energy balances and thermodynamic equilibrium equations. 
It has been established that RCs point toward increasing temperature. This implies that they 
“diverge” from low-boiling vertices (pure components or azeotropes) and converge toward high-
boiling vertices. 
At the same time, intermediate-boiling vertices exist, at which no RC ever starts or ends. From 
now on, we shall call the starting and end points of RCs “nodes”, and all other vertices 
“saddles”. Nodes are either “stable” or “unstable” (Figure 6). A stable node is like a valley, in 
which a rolling ball will settle down in a stable position; all RCs in a distillation region point 
toward (arrive at) a stable node. In any distillation region, the highest-boiling vertex is a stable 
node. An unstable node is analogous to a mountain top, from which a ball will roll down toward 
a more stable position. In any distillation region, the lowest-boiling vertex is an unstable node, 
from which all RCs in that region will start. A saddle point, as shown in Figure 7, has no RCs 
coming in or going out. Moving in one direction along the triangle edge is like going downhill 
(toward a stable node), while going in another direction resembles going uphill (toward an 
unstable node). 
In order to determine the nature of pure-component vertices, arrows are drawn on every segment 
of the ternary diagram's outer border, between pure components and binary azeotropes, and let 
these point toward the segment end with the highest boiling temperature. Stable nodes will only 
have arrows pointing inward, unstable nodes will have all arrows pointing outward, and saddles 
will have some arrows pointing inward and some pointing outward. 

 

 
 
If a ternary azeotrope exists, it is important to determine its nature as a node or a saddle. Foucher 
et al. (1991) stated that a ternary saddle azeotrope must always have four connections to other 
vertices: two higher-boiling and two lower-boiling vertices. If these connections are not 
available, the ternary azeotrope must be a node. Thus, a ternary azeotrope is a node (1) if it is 
one of the two highest-boiling or the two lowest-boiling species (excluding pure-component 
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saddles) in the system or (2) when the sum of the number of pure-component nodes and the 
number of binary azeotropes is smaller than 4. Otherwise, the ternary azeotrope is a saddle. 
 
Not all combinations of azeotropes can freely exist, due to thermodynamic and topological 
constraints. Matsuyama and Nishimura (1977) reduce the total number of possible configurations 
to 113, by making the assumption that there can be at most one ternary azeotrope per system and 
one binary azeotrope per triangle edge.  
Matsuyama and Nishimura (1977) find that ternary systems can be classified according to their 
number and type of azeotropes. Of the three digits, the first one corresponds to the A-B binary 
pair, the second one to the B-C pair, and the third one to the A-C pair, where A, B, and C 
represent the lowest-, intermediate-, and highest-boiling components, respectively. The meaning 
of the digits is: 
 
0: no azeotrope 
1: binary minimum-boiling azeotrope - unstable node 
2: binary minimum-boiling azeotrope - saddle 
3: binary maximum-boiling azeotrope - stable node 
4: binary maximum-boiling azeotrope - saddle 
 
If a ternary azeotrope is present, the three-digit code is followed by one of three letters: 
 
m: minimum-boiling azeotrope 
M: maximum-boiling azeotrope 
S: intermediate-boiling azeotrope 
 
The 87 RCM configurations that contain at least one minimum-boiling binary azeotrope are 
given in Doherty and Caldarola (1985). The cases most commonly encountered in industry are 
among those 87. 
 
One illustrative example of a residue curve diagram is shown in Figure 1.4. The common fixed 
points of the equations (1.5) and (1.6) are the singular points of the corresponding residue curve 
(distillation line) map. They can either be pure components or azeotropes (Gurikov, 1958). The 
singular point of a residue curve map are the equilibria of equation 1.5, i.e, the solution of 0 = 
y(x)−x. Thus, the singular points are the pure components and the azeotropes in the composition 
space. For the isobaric case, there are only isolated singular points. The singular points have real 
nonzero eigenvalues. They can be categorized as stable nodes, unstable nodes, and saddles (both 
positive and negative eigenvalues). The topology at these singular points is determined by the 
eigenvalues of (1.5), which are all distinct and real (Doherty and Perkins, 1978a). A stable node 
results if all eigenvalues are smaller than zero, an unstable node if all eigenvalues are larger than 
zero and a saddle singular point for mixed signs. A zero eigenvalue (not observed for the VLE) 
would result at a non-elementary singular point. Residue curves originate from unstable nodes 
and end at stable nodes. At saddles, residue curves end and start. By definition, residue curves do 
not intersect. Therefore, there are no closed cycles. 
The following definitions apply (Serafimov et al., 1971; Bekiaris et al., 1996): A distillation 
region is a subset of the composition simplex in which all residue curves originate from the 
same, locally lowest-boiling singular point and end at the same, locally highest-boiling singular 
point. If there exists more than one node of the same kind (stable or unstable), there will be at 
least as many simple distillation regions as there are nodes of that same kind. The curves which 
separate different distillation regions are called residue curve boundaries. In this work, the term 
boundary is used for both residue curve boundaries and the edges of the composition simplex 
(Figure 1.5). At least one of the ends of a residue curve boundary must be a saddle. The residue 
curve map shown in Figure 1.4 has two simple distillation regions. The pure component L is the 
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only unstable node where all residue curves originate. The residue curves either end in pure I or 
pure H, which are the two stable nodes of this mixture. Thus, there are two simple distillation 
regions that are separated by the residue curve boundary, which originates from pure L and ends 
in the I-H azeotrope, the saddle of the system. 

 
Figure 1.4: Residue curve map of the L, I, and H forming a 020 mixture (Matsuyama and 

Nishimura, 1977). 
 

For a constant pressure, the temperature always increases along a residue curve, as one would 
expect to happen according to the original definition of residue curves. The liquid phase depletes 
in the more volatile components which increases the boiling temperature of the residue. If the 
boiling point temperatures are plotted over the composition space giving a temperature surface, 
the unstable nodes represent the local minima of this surface while the stable nodes represent the 
local maxima of this surface. The globally lowest (highest) boiling point is always at an unstable 
(stable) node. 
The topological classification of binary mixtures is trivial: A mixture can exhibit a minimum 
boiling, a maximum boiling or no azeotrope. Note that the rare cases with multiple binary 
azeotropes or intermediate boiling azeotropes are excluded. Under the assumption of at most one 
ternary azeotrope present, the following topological equation relates the types and numbers of 
singular points for ternary mixtures (Gurikov, 1958; Doherty and Perkins, 1979): 

 
Figure 1.5: Illustration of a residue curve map for a mixture belonging to the 201 class. 
Types and numbers of singular points for ternary mixtures (Gurikov, 1958; Doherty and 

Perkins, 1979): 
 
( ) ( ) ( ) 124 )1()1()2()2()3()3( =−+−+− SNSNSN       (1.7) 

 
where N refers to a node, S to a saddle and the superscripts indicate the number of components 
present at these singular points. For the example in Figure 1.4, 

12,1 )1()1()2()2( ==== S and N  SN   and therefore, 1120204 =−+⋅−⋅ . 
1.3.4. Column Profiles at Infinite and Total Reflux  
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In this section, the conditions for feasible column profiles at total and at infinite reflux are 
reviewed. In general, feasibility of column profiles can be assigned to a real distillation plant (if 
the profile is measured) or to a distillation column model (steady-state solution profiles). The 
model of primary interest here is a distillation column at infinite reflux. In the following, it is 
important to point at the fundamental difference between total reflux and infinite reflux. 
Unfortunately, literature does often not differentiate between these two cases (Widagdo and 
Seider, 1996; Westerberg and Wahnschafft, 1996).  
Total reflux is the limiting case of a distillation column with no feed and no product flows: F = 0, 
D = 0 and B = 0 (compare to Figure 1.2). Thus, the overall mass balance is fulfilled by definition 
and an external graphical lever rule does not exist. As a result, the molar reflux and boilup flows 
have identical finite flowrates at each column intersection. In total reflux, the profiles of packed 
distillation columns coincide with the residue curves (1.5) under the assumption that the liquid 
phase is perfectly mixed and thus, all the mass-transfer resistance is in the vapour phase 
(Serafimov et al., 1973; Pollmann and Blass, 1994).  
Similar statements can be made for other assumptions on the mass-transfer resistances. By 
definition, the profile of a tray column at total reflux coincides with a distillation line. Unlike 
total reflux, a column at infinite reflux exhibits infinite internal flows while the feed and product 
flowrates are not zero: There are feeds entering the column and products withdrawn at the top 
and the bottom. Therefore, the overall and the component material balances have to be fulfilled 
for a feasible column design:  
 

BDF BxDxFx
BDF

+=

+=
          (1.8) 

 
As a result, the distillation lever rule can be applied to any operating point of such a column. 
However, the reflux and boil-up flowrates are infinitely large at any location along the column 
and thus, this case is also referred to as the limiting case of infinite internal flows.  
Laroche et al. (1992a) have shown that the differential equations describing the profile of a 
packed column at infinite reflux become identical to the residue curve equations (1.5). Similarly 
and by definition, the profiles of tray columns coincide with the distillation lines. Moreover, the 
locations of the feeds entering a column at infinite reflux have no impact on the column profile 
(Petlyuk and Avetyan, 1971).  
Feasibility of profiles at infinite reflux in a single column or a column sequence has been 
extensively studied in the literature, e.g. Laroche et al. (1992a; 1992b) and Westerberg and 
Wahnschafft (1996). Due to the similar properties of distillation lines and residue curves, residue 
curves are considered to be a very good approximation to the profiles of homogeneous tray 
columns at infinite reflux (Laroche et al., 1992a; Widagdo and Seider, 1996), which is not true 
for heterogeneous mixtures (Bekiaris et al., 1996). Since residue curves exactly describe profiles 
of packed columns and approximate tray columns, they will be used for both column types 
hereafter as long as the mixture is homogeneous (with no phase-split).  
 
1.3.5. ∞/∞ Analysis 
 
The ∞/∞ analysis is a framework that predicts possible product paths of a distillation column 
based on residue curve map information only. A product path is obtained by the continuation of 
solutions found by varying, for example, the distillate flow rate D from 0 to its maximum, the 
feed flow rate F. In general, this product path can be generated by either a series of case studies 
using a distillation column model implemented in a commercial simulator such as AspenPlus, or 
by a “continuation” of solutions using a simplified model (Güttinger, 1998) or a rigorous model 
as implemented in AspenPlus (Vadapalli and Seader, 1997). To predict the product path based 
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on residue curve map information only, two main simplifying assumptions1 are necessary: 
Infinite reflux (internal flow rates) and infinite length of the column / number of trays. 
Infinite Reflux. If a column is operated at infinite reflux, the composition profile of a packed 
column will follow a part of a residue curve (Van Dongen and Doherty, 1985; Laroche et al., 
1992a). Hence, a feed F of composition xF can be split into two products D and B with 
compositions xD and xB if xD and xB lie on one residue curve and are collinear with xF  according 
to the mass balance of the column (equation 1.8). This implies that the distillate and the bottom 
product have to lie in the same distillation region. Note that the feed composition xF does not 
necessarily have to lie in the same distillation region. This represents one of the key features of 
the boundary separation scheme. For a column with trays, the composition profile follows a 
distillation line which has qualitatively the same properties as a residue curve (Bekiaris et al., 
1996). 
Infinite Length. For an infinitely long column, the profile must contain a pinch. In this context, 
the column profile contains a pinch if it exhibits a zone where the composition is constant. The 
most well known pinch in distillation is the pinch at minimum reflux. At this point, the number 
of stages goes to infinity. 
Infinite Reflux / Infinite Length. The combination of these two asymptotic cases is the basis of 
the ∞/∞ analysis. If a column of infinite length is operated at infinite reflux, then the pinch must 
be a singular point in the residue curve map. This combination was studied first by Petlyuk and 
Avetyan (1971). About 20 years later, Bekiaris et al. (1993) developed this combination into a 
tool that can be used to predict the product path of distillation columns based on residue curve 
map information only. Using this framework, the existence of multiple steady states was 
predicted and explained for homogeneous azeotropic distillation columns (Bekiaris et al., 1993) 
and heterogeneous azeotropic distillation columns (Bekiaris et al., 1996).  
 
There are three possible profiles for an ∞/∞ column (Bekiaris et al., 1993) which are shown in 
Figure 1.6: 
Type I. The column profile is a type I profile if the distillate composition xD is at the unstable 
node (L in this case). The column profile starts at L and follows the indicated residue curve until 
it is at xB that is collinear with xF and xD. For a different split D/F, the profile would follow a 
different residue curve. 
Type II. The column profile is a type II profile if the bottom composition xB is at the stable node 
(H in this case). The column profile starts at an arbitrary point xD that is collinear with xF and xB 
and follows the indicated residue curve until it is at the stable node (H in this case). 
Type III . The column profile is a type III profile if the profile contains at least one saddle (the I-
H azeotrope in this case). The column profile starts either at the edge of the triangle or on a 
residue curve boundary, as in this case. It follows the residue curve boundary, passes the I-H 
azeotrope, and ends somewhere at the binary I-H edge. 

 
Figure 1.6: Three possible ∞/∞ column profiles illustrated for a 020 mixture. 
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For a given feed composition xF and flow rate F, the distillate flow D, which is the only 
unspecified parameter, can be varied from 0 to F to track all possible product compositions xD 
and xB. This gives the product paths for the distillate and the bottom (Figure 1.7a). Figure 1.7b 
shows the distillate and bottom compositions xD and xB for a continuation of the parameter D/F. 
There are no multiple steady states. 
 

 
Figure 1.7: a) ∞/∞ product paths of the distillate and bottom composition for a 020 

mixture, b) distillate and bottom compositions for a continuation of D/F. 
 
Bekiaris et al. (1993) elaborated also a framework for homogenous distillation columns. 
 
 
1.3.5.1. Existence of Multiple Steady States (Bekiaris et al. (1993)) 
 
This section presents a detailed study of the ∞/∞ case. For the analysis of this situation, a 001 
class ternary mixture is used. Figure 1.8 shows the residue curve map of this type of ternary 
mixture. In this diagram, there is only one minimum boiling binary azeotrope between the light 
(L) and the heavy (H) component. The azeotrope is an unstable node, the light and the 
intermediate pure component corners are saddles, and the heavy component corner is a stable 
node. All residue curves start from the azeotrope and end at the heavy component corner; there 
are no interior distillation boundaries in this diagram and hence the whole triangle forms a single 
distillation region. At infinite reflux, column profiles coincide with residue curves. In the special 
case of columns with an infinite number of trays there is one additional requirement: The column 
profile should include a pinch point. There are four candidate pinch points in the residue curve 
map shown in Figure 1.8, namely the three pure component corners and the azeotrope. 
Therefore, in the ∞/∞ case, the only acceptable columns belong to one of the following types: 
I. Columns whose distillate composition is that of the azeotrope (unstable node). In this case, the 
column profile starts from the azeotrope (top of the column), follows a residue curve, and ends 
at an arbitrary point on the same residue curve (bottom product). 
II. Columns whose bottom product composition is pure heavy component (stable node). In this 
case, the column profile starts from an arbitrary point in the composition triangle, follows the 
residue curve that passes through this starting point, and ends at the heavy component corner 
(bottom product). 
III. Columns whose composition profiles run along the edges of the triangle and contain at least 
one of the saddle corners (light and intermediate component corners). In this case, the top and 
bottom products lie on the edges of the triangle. 
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Figure 1.8. Residue curve diagram of a 001 class ternary mixture 

 
In the ∞/∞ case, given a feed composition and a feed flow rate F, the only unspecified parameter 
is the distillate flow rate D (the bottom flow rate is B = F - D from the overall material balance). 
In order to find whether multiple steady states can occur (i.e., whether different column profiles 
correspond to the same value of D), all the possible composition profiles are found by tracking 
the distillate and bottoms in the composition triangle, starting from the column profile with D = 0 
and ending with the column profile with D = F, performing in this way a bifurcation study 
(continuation of solutions), using the distillate flow as the bifurcation parameter. This task can be 
achieved because in the ∞/∞ case a continuation of solutions can be carried out based on 
physical arguments only. The light component mole fraction in the distillate xDL is recorded 
along this “continuation path.”  
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Figure 1.9. (a-h) Column profiles with infinite number of trays at infinite reflux. 

 
 
The following analysis can be applied to any feed composition, but just for simplicity, it is 
assumed a feed that lies on the line connecting the azeotrope and the corner I. Therefore, 

HILF ++= and  H)  L/(L + equals the azeotropic composition of the light component. 
If D = 0, then B = F = L + I + H and therefore the composition of the bottom product coincides 
with that of the feed F. Hence the bottom product composition is an interior point of the 
composition triangle (i.e., it does not lie on an edge). The only acceptable column profile (as 
defined above) that ends (bottom product) at an interior point of the triangle is the one that starts 
(top of the column) from the azeotrope and follows the residue curve that the bottoms 
composition lies on. This is a type I column profile. Figure 1.9a shows the column profile for D 
= 0. Therefore, in this case, H)  (LL  xDL += the azeotropic composition. 
Using this as a starting profile, all possible type I column profiles are found for the given feed. 
Since, for this type of profile, the top of the column coincides with the azeotrope, the material 
balance line is a segment of the line connecting the azeotrope, the feed, and the intermediate 
component corner (for this particular choice of feed composition). Therefore the bottom 
composition (B) can be any point on the line segment between the feed F and the intermediate 
component corner (I).  
Figure 1.9b illustrates a type I column profile with the characteristics mentioned before. As B 
moves along the FI line segment from F to I, the line BF continuously lengthens. Therefore, 
according to the lever material balance rule, the bottoms flow decreases monotonically from the 
initial F to I while the distillate flow will increase monotonically from initially 0 to L + H. The 
composition of L in the distillate (xDL) for all type I column profiles is kept constant and equal to 
the azeotropic composition (  H)  L/(L + ). Therefore, a column profile of type I (similar to that of 
Figure 1.9b) exists for 0 < D < H + L. 
Figure 1.9c shows the profile with the bottoms composition B located at the intermediate 
component corner (I) and the distillate composition located at the azeotrope. In this case, 

 L  H  D += and B = I. Both B and D lie on an edge of the composition triangle, and therefore in 
this case the column profile belongs to type III. Using this as a starting profile, all possible type 
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III column profiles are found for the given feed. In this type of profiles, both D and B must lie on 
the edges of the triangle. There are two alternative routes: B should move along either the IL 
edge or the IH edge. In the first case, the material balance implies that D has to move on the line 
segment between the azeotrope and the heavy component corner (HI). This is not allowable 
though because there is no residue curve connecting D and B. In the second case, D has to move 
along the line segment between the azeotrope and the light component corner while B lies on the 
IH edge. In this case, there is a residue curve connecting B and D. 
Figure 1.9d illustrates such a column profile. Since D lies on the LH edge, the composition of the 
intermediate component I in the distillate is zero and therefore the whole amount of I fed into the 
column is recovered in the bottom product. Because B lies on the IH edge, there are some 
amounts of heavy component in the bottom product while the whole amount of L fed is 
recovered entirely in the distillate. Therefore B > I and consequently D < H + L. As D moves 
along the LH side from the azeotrope to the light component corner, the amount of the heavy 
component in the distillate decreases and consequently the distillate flow decreases 
monotonically from L + H to L (when D is located at the light component corner). Therefore, a 
column profile of type III similar to that shown in Figure 1.9d exists for L + H > D > L. Since all 
the light component fed is recovered in the distillate, DLxDL = . Therefore, along this part of 
the continuation path, the light component concentration in the distillate increases monotonically 
from L/(L + H) to 1.  
Figure 1.9e shows the profile with the distillate composition D located at the light component 
corner (L). In this case D = L and B = I + H. As B moves further along the IH side toward the H 
corner, D moves along the LI edge toward the I corner. Figure 1.9f illustrates such a type III 
column profile. In this case, D contains no heavy component, some amount of the intermediate 
component, and all the light component fed. Consequently, B contains no light component, some 
amount of the intermediate component, and all the heavy component fed into the column. As B 
moves along the IH edge toward the heavy component corner, the bottom product flow decreases 
monotonically from the initial I + H to H (when B is located at the H corner). Consequently 
along this part of the continuation path the distillate flow increases monotonically from L to L + 
I. Therefore a column profile of type III similar to that shown in Figure 1.9f exists 
for H  I  D  H +<< . Along this part of the continuation path, DLxDL = and hence xDL decreases 
monotonically from 1 to L/(L + I). 
Figure 1.9g shows the column profile with the bottoms composition B located at the heavy 
component corner (H). In this case B = H, D = L +I, and ( )ILLxDL += . B is not allowed to 
move along the HL edge because a residue curve connecting B and D does not exist. Therefore 
all type III profiles have been found. 
The last case to be examined is the type II profiles. In this case the bottoms product composition 
is 100 % heavy component (H corner). Therefore, the material balance line lies on the line 
connecting the feed F and the heavy component corner H. Hence, the distillate composition D 
can be any point on this line between the feed F and the LI edge. Figure 1.9g shows a type II 
column profile with the characteristics mentioned before. As D moves toward F, the length of 
DF decreases. Therefore, according to the lever material balance rule, the distillate flow 
increases monotonically from the initial I + L to I + L + H (=F) while the bottoms flow decreases 
from H to zero. Therefore a column profile of type II similar to that shown in Figure 1.9h exists 
for I + L < D < I + L + H = F. Along this part of the continuation path, the composition of L in 
the distillate decreases from L/(L + I) to L/(L + I + H) according to the rule DLxDL = . Finally, 
the endpoint of this exhaustive search for all possible column profiles is the column profile with 
D = F, B = 0 and xDL = xFL. 
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Figure 1.10. Composition of L in the distillate along the continuation path. 

 
 
Gathering all the results obtained, the diagram presented in figure 1.10 is obtained, plotting xDL 
vs D. In the beginning as D increases from zero to L + H, xDL remains constant at L/(L + H) (the 
azeotropic composition). Then D decreases from L + H to L while DLxDL = and therefore 
increases from L/(L + H) to 1. Then D increases again from L to L + I and finally to F while 

DLxDL = and hence decreases from 1 to L/(L + I) and finally to L/F (the feed composition). In 
Figure 1.10, thepoints a-h correspond to the column profiles shown in Figures 1.9a- 1.9h. Figure 
1.10 shows that for D between L and L + H there are three steady states (points 1-3):  

• Point 1 always corresponds to a column profile of type I like the one depicted in Figure 
1.9b. 

• Point 2 always corresponds to a type III column profile where the distillate composition 
lies on the line segment between the azeotrope and L (similar to Figure 1.9d). 

• For point 3 there are two cases: 
o (i) If I < H and D > L + I, then point 3 corresponds to a type II column profile 

(similar to that of Figure 1.9h). 
o (ii) In the case that I > H (Figure 1.10) as well as in the case that I < H but D < L 

+ I, point 3 corresponds to a type III column profile where the distillate 
composition lies on the LI edge (similar to that in Figure 1.9f). 

In this analysis, a special choice of feed composition has been used. It is very simple to apply the 
same procedure to any feed composition and prove that for any feed composition inside the 
composition triangle three steady states exist. Therefore, for this class of residue curve diagrams, 
namely the 001 class, three steady states exist for any feed composition. Moreover, in this case 
the existence of multiplicities is independent of the thermodynamic model used to describe the 
vapour-liquid equilibrium. 
Given any ternary mixture, its residue curve diagram, and a feed composition, it is very simple to 
conclude whether multiple steady states can occur in the ∞/∞ case by applying the procedure 
described above.  
 
1.3.5.2. Analysis 
 
In the previous section, a “path” generating all possible column profiles has been generated, 
starting from the column profile with D = 0 (type I) and ending at the column profile with D = F 
(type 11). In the beginning D increases, then decreases, and then increases again. The key feature 
that brought about the multiple steady states is that in a segment along this “path” D decreased. 
Any distillation region containing n ( 3≥n ) singular points is an n-polygon. In every distillation 
region there is one unstable node (the origin of all residue curves in the region), one stable node 
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(the endpoint of all residue curves in the region), and n - 2 saddles. Finally, it is assumed that F is 
an interior point of a distillation region. It is easy to show that, for feeds on a straight distillation 
region boundary, D cannot decrease along the continuation path. This is the case for any feed 
located on the edges of the triangle (binary feeds) in Figure 1.8. 
Using the arguments which were discussed in the previous section, the following can be proven: 
Fact 1. Along the continuation path, D increases monotonically as we track all type I and type 
11 column profiles. 
Therefore, a decrease in D can only occur as we track the type III column profiles, i.e., columns 
whose composition profiles run along the edges of the distillation region where F is located and 
contain at least one of the saddle singular points. In this case, the top and bottom products lie on 
the edges of the distillation region.  
Fact 2. Along the continuation path, D increases monotonically for all type III column 
profiles that contain only one saddle singular point. 
 

 
Figure 1.11. Monotonic increase of D for column profiles that contain only one saddle singular 

point. 
 
Figure 1.11 shows a column profile (DsB) that contains only one saddle point. The lines ds and 
sb are distillation region boundaries. The arrows on ds and sb show the direction of the residue 
curves; this direction coincides with the direction of the continuation path. D’sB’ is another, 
“later,” column profile along this path. Drawing the line that is parallel to BB’ and passes 
through D, D” is obtained, which is the point where this line intersects the D’B’ line. By 
construction, FB/DF = FB’/D’’F. Since D”F > D’ F, then FB/DF < FB’/D’ F. Therefore, by the 
lever material balance rule, it is concluded that D increases along the continuation path. This 
result is independent of the angle dsb, and therefore D increases monotonically for all type III 
column profiles that contain only one saddle singular point.  
Fact 2 is equivalent to the following: 
Fact 3. A decrease in D can only occur as we track type III column profiles that contain at 
least two saddles. 
Two consequences of fact 3 are the following: 

1. If multiplicities exist, one of the multiple steady state profiles will contain at least two 
saddles. 

2. A necessary condition for the existence of this type of multiplicities is that the residue 
curve diagram contains at least two neighboring saddles. 

The situation of at least two neighbouring saddles arises in 77 out of the 113 possible residue 
curve diagrams (as classified by Matsuyama and Nishimura (1977)). Among the residue curve 
diagrams that do not contain two neighbouring saddles are the ideal case (000 class) and the case 
of a heavy entrainer that does not introduce any additional azeotropes (100 class), which are 
depicted in Figure 1.12.  
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Figure 1.12. Residue curve diagrams of (a) a 000 class and (b) a 100 class ternary mixture. 

 
No more than three steady states can exist in the case of two neighbouring saddles while for 
certain feed compositions it is possible that more than three steady states exist in the case of 
more than two neighbouring saddles. 
However, the condition of at least two neighbouring saddles is not sufficient for the existence of 
multiple steady states. There are two additional requirements. 
 
1.3.5.3. Geometry of the Distillation Boundaries 
 
The existence of multiplicities depends on the geometry of the distillation boundaries that form 
the two saddles. Figure 1.13 illustrates two cases of two neighbouring saddles. 

 
Figure 1.13. Geometry of the distillation region boundaries. (a) D increases; (b) D decreases 

along the continuation path. 
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The only difference between the two is the orientation of the ds distillation boundary. In order to 
check if D increases or decreases along the continuation path, the procedure used for the proof of 
fact 2 is applied. 
In Figure 1.13b, the line from D that is parallel to BB’ crosses the D’B’ line segment while it 
does not cross it in Figure 1.13a. Hence in Figure 1.13a, D”F > D’F, while D”F < D’F in Figure 
1.13b. As a result, D increases in Figure 1.13a whereas D decreases in Figure 1.13b. Therefore 
multiple steady states exist only for the situation depicted in Figure 1.13b. The existence of 
multiple steady states depends on the relative position of the boundaries ds and s’b while the 
location of the ss’ boundary does not play any role. If the boundaries ds and s’b are parallel, then 
D remains constant along this part of the continuation path. Therefore, in this case there is an 
infinite number of profiles with different product compositions for a constant distillate flow D. 
In summary, for the existence of multiplicities the following is required (geometrical condition): 
While moving along the continuation path from D to D’ and accordingly from B to B’, the line 
that passes from D and is parallel to BB’ crosses the D’B’ line segment. 
 
1.3.5.4. Appropriate Feed Composition  
 
Even if a residue curve diagram contains two neighbouring saddles with the appropriate 
geometry (as described above) for the existence of multiplicities, there might be some feed 
compositions for which multiple steady states do not exist. 
 

 
Figure 1.14. Residue curve diagram of a 231 class ternary mixture and the appropriate feed 

region. 
 
Figure 1.14 shows a residue curve diagram that belongs in the 231 class. In this diagram there 
are two distillation regions. In the lower region there are three saddles (two of them 
neighbouring) while in the upper region there is only one saddle. Therefore if the feed 
composition lies in the upper region, a unique steady state exists for each value of D. However, 
placing the feed in the lower region is not sufficient for the existence of multiple steady states. 
As can be seen from Figure 1.14, ab and Ic form the only pair of boundaries that enables the 
existence of multiple steady states. Hence, the only feed compositions that will exhibit multiple 
steady states are those that can be separated in a distillate lying on ab and a bottom product lying 
on Ic for some value of D. Therefore, multiple steady states exist for any feed located in the 
convex hull formed by ab and IC (shaded region in Figure 1.14). 
In summary, multiple steady states exist only for the feed compositions that lie in the convex hull 
formed by a pair of distillation region boundaries that satisfy the geometrical condition described 
above. 
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In this section the ∞/∞ case for a ternary mixture was studied, under the assumption of straight 
line boundaries. A necessary condition for the existence of multiplicities (at least two 
neighbouring saddles) was found. Furthermore, the conditions developed above for the geometry 
of the boundaries and the appropriate feed compositions constitute a necessary and sufficient 
condition for the existence of multiple steady states in the ∞/∞ case. 
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Chapter 2. Multiple Steady States: A Review 
 
This chapter contains a review of the literature on multiple steady states in distillation. Note that 
uniqueness of the steady state in distillation was widely believed over a long time (Doherty and 
Perkins, 1982): “In spite of significant nonlinearities even in the simplest model, the distillation 
literature generally takes it for granted that distillation models possess a globally asymptotically 
stable singular point.” 
Fortunately, this believe was not justified by anything. To date, 70 major contributions to MSS 
in distillation are known, which can be divided into contributions for non-reactive (52 papers) 
and reactive distillation (18 papers). For the review, the contributions have been classified 
according to the general type of results: simulations, analytical work or experiments.  
 
2.1 MSS in Azeotropic Distillation 
 
2.1.1 Early Contributions: Analysis and Simulation 
 
Rosenbrock (1962) [homogeneous analysis]: In a pioneering work, Rosenbrock applied 
Lyapunov's second method and rigorously proved that the steady state of a distillation column 
separating a binary mixture is unique. He assumed constant molar flows (CMO, see Appendix B) 
and a unique y(x) relationship, i.e., that to every vapour composition y there corresponds a 
unique liquid composition value x in equilibrium with y. Obviously, the second condition 
excludes all heterogeneous systems, but not the cases of non-ideal zeotropic or azeotropic 
behavior. 
Balashov et al. (1970), Petlyuk and Avetyan (1971) [homogeneous analysis]: Petlyuk and 
Avet'yan provided a bifurcation diagram showing the existence of MSS in the distillation of a 
ternary homogeneous system. Their analysis bases on the assumption of CMO, and the Wilson 
activity coeficient model was used to describe the non-ideal VLE. Moreover, the authors first 
presented the conceptual idea of the ∞/∞ case of columns which was reinvented by Bekiaris and 
coworkers later on. However, the condition developed by Petlyuk and Avet'yan for the existence 
of MSS (two neighboring saddles) is neither necessary nor sufficient (Bekiaris et al., 1993). 
Their results show the possibility of MSS for one specific class of systems, but no real mixture 
exhibiting multiple steady states is reported. Similar results have been published in the Russian 
book of Balashov et al. (1970), which is only available in the central libraries of Russia. 
Shewchuk (1974) [heterogeneous simulations]: In his PhD thesis, Shewchuk first reported 
simulation evidence for the existence of multiplicities in the heterogeneous ternary mixture 
ethanol, benzene and water, which belongs to the 222-m class according to Matsuyama and 
Nishimura (1977). 
Shewchuk's statement: “It was also found that the dehydration tower converged to two different 
steady states depending on the starting guesses. Both of these solutions [. . . ] satisfied the highly 
nonlinear equations.” At that time, the phenomenon looked quite awkward and its existence was 
opposing the widely-spread believe quoted earlier. Therefore, Shewchuk considered bad 
thermodynamic data to be responsible for his observation and did not report the results in great 
detail. Consequently, it is hard to justify his results, although the column profiles shown closely 
resemble those of Magnussen et al. (1979). 
Magnussen et al. (1979) [heterogeneous simulations]: Magnussen and coworkers presented 
simulation results that show the existence of three steady states (two of them stable and one 
unstable) for the heterogeneous EWB mixture at atmospheric pressure. In their calculations, 
CMO, constant pressure and ideal vapour phase were assumed. The phase splitter (decanter) of 
the column is removed and instead, a second feed enters at the top of the column. This second 
feed would consist of the entrainer recycle (from the decanter) and the entrainer make-up stream 
| its composition and flowrate are identical for all three steady states and for the same VLE 
model. Therefore, the three steady states represent an output multiplicity. Importantly, the liquid 
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composition profiles of all three steady states are reported to lie entirely in the single liquid 
phase region (homogeneous profiles), only the overhead vapour exhibits two liquid phases after 
condensation. 
It is noteworthy that the multiplicities were observed with the UNIQUAC and NRTL activity 
coeficient models (and the corresponding parameters), but a unique steady state was found using 
the Wilson model and data, which was reported to poorly represent the VLE of this mixture 
(despite of the fact that the Wilson model cannot predict a liquid – liquid phase split). The 
parameter sets used for the VLE calculations are questionable and have not been clearly 
reported. Finally, the authors observed a similar multiplicity for the mixture of ethanol, water 
and pentane. 
 
2.1.2 Heterogeneous Simulation Studies Reporting MSS 
 
Magnussen and co-workers results triggered great interest in distillation multiplicities. The belief 
that heterogeneity of the mixture was a possible cause for such multiplicities directed the 
attention towards heterogeneous azeotropic distillation. Consequently, several simulation studies 
were published for the ethanol-water-benzene system and for a few other heterogeneous 
mixtures. 
Prokopakis et al. (1981) [heterogeneous simulations]: Using a column without decanter (with a 
second feed of fixed composition and flowrate entering at the column top) and the NRTL activity 
coeficient model, Prokopakis and coworkers verified the three operating regimes of Magnussen 
et al. (1979) for the EWB mixture, but not steady-state multiplicity. In their model, they included 
energy balances and pressure drops along the column. Unfortunately, the critical simulation 
results on multiplicities are not reported in necessary detail. Next, the authors studied a mixture 
of isopropanol, water and cyclohexane and reported several steady states for the same 
“specifications”. In these steady states, however, the entrainer flowrate in the boilup stream and 
the reflux flowrate and compositions are held constant, while the product flowrates differ. Since 
in practice, compositions of an internal column stream can only be specified by means of control, 
this case does not correspond to an “open-loop” output multiplicity. 
The main advance compared with earlier studies on the heterogeneous system lies in the fact, 
that the entire column sequence, consisting of the azeotropic column with decanter and including 
the idealized mass balance of the recovery column, was simulated. 
Kovach III and Seider (1987a; 1987b) [heterogeneous simulations]: Kovach III and Seider 
presented homotopy continuations and experimental results for the mixture sec-butanol, water 
and di-secondary-butyl ether (mixed with butylenes and methyl-ethyl- ketone impurities). They 
modeled a sub-cooled decanter and used the reboiler heat duty as well as the organic and 
aqueous reflux ratios as the specification. Such a configuration closely corresponds to [LN,Qr] 
for homogeneous mixtures. Although no multiplicities were found in the study, they located two 
steady states (one with a single liquid phase on all trays and the other one with two liquid phases 
on 70% of the trays) over a narrow range of the reflux ratio (high parametric sensitivity). Finally, 
they conclude that the observations in the simulation are consistent with the experimentally 
observed erratic behavior of the distillation tower. 
Venkataraman and Lucia (1988), Kingsley and Lucia (1988) [heterogeneous simulations]: 
Venkataraman and Lucia performed a continuation study for the EWB column of Prokopakis and 
Seider (1983b) with the molar bottoms flowrate as the bifurcation parameter, but without a 
decanter (second feed at the column top). They found three steady states over a narrow range of 
bottoms flowrates in the bifurcation analysis (output multiplicities). Kingsley and Lucia (1988) 
showed for the same column that there is a minimum tray eficiency where these three steady 
states disappear. For columns with a tray eficiency less than this minimum, a unique steady state 
exists in the whole range of bottoms flowrates. Above this minimum, three steady states exist in 
some bottoms flowrate interval. However, these steady states were calculated without taking into 
account the presence or absence of two liquid phases on a tray (thus ignoring the liquid split). 
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Hence, they do not correspond to realistic column profiles but can be used as starting points of a 
heterogeneous distillation calculation, see also Pham and Doherty (1990). By this, all three 
profiles “ultimately lead to the same heterogeneous solution” and thus, no heterogeneous 
multiplicities have been produced. 
Widagdo et al. (1989) [heterogeneous simulations]: Widagdo and co-workers performed 
parameterization with respect to the aqueous reflux ratio for the mixture sec- butanol, water and 
di-secondary-butyl ether, which was also studied by Kovach III and Seider. They found three 
steady states on a narrow range of the aqueous reflux ratio | a multiplicity where the top tray 
exhibits a second liquid phase. A bifurcation analysis for a single-stage column showed a unique 
solution and the authors suggested that other effects, “beyond those characterizing a single 
stage”, may be responsible. This result compares to that of Doherty and Perkins (1982). 
Cairns and Furzer (1990) [heterogeneous simulations]: The authors study the multiplicities 
reported by Magnussen et al. (1979), but using the UNIFAC model to describe the liquid phase 
behaviour of the EWB mixture. The existence of three steady states (output multiplicities) was 
verified, but two of them were only obtained by ignoring the liquid-phase split on the column 
trays. Hence, it was concluded that these two profiles are fictitious. Moreover, two steady states 
(one again obtained by ignoring the liquid split) are reported for the mixture ethanol, water and 
iso-octane. Clearly, the authors were able to demonstrate that erroneous solutions can occur 
when ignoring the liquid-phase split, but do not compute MSS with their corrected algorithms. 
Rovaglio and Doherty (1990) [heterogeneous simulations]: Rovaglio and Doherty studied the 
EWB system in a column with and without decanter as well as for different sets of parameters 
(UNIQUAC activity coefficient model). They found three steady states for the parameter set and 
column design of Magnussen et al. (1979) through dynamic simulations ignoring the decanter. 
Moreover, the three solutions still exist when the decanter is included. The profiles of the three 
solutions follow different paths in the composition triangle and all have trays lying in the two-
liquid phase region. Since two of the three solutions were unstable, the authors conclude that 
even more steady states should exist, a result consistent with the five steady states reported by 
Kovach III and Seider (1987b). 
Rovaglio et al. (1991) [heterogeneous simulations]: Rovaglio and co-workers verified the three 
solutions found by Rovaglio and Doherty (1990) for the second column design and the PAGE80 
parameter set. They were able to show that the solutions persist even when the entrainer recovery 
column and the benzene recycle stream is included in the model (MSS in a column sequence). 
 
2.1.3. From Homogeneous to Heterogeneous System Analysis 
 
Rovaglio et al. (1993) [heterogeneous simulations]: The authors verified the existence of MSS 
reported by various groups for the EWB system through dynamic simulations. They offered an 
explanation for the multiplicities reported by Rovaglio and Doherty (1990) and Rovaglio et al. 
(1991) based on the observation, that the entrainer inventory in the stripping section is different 
for the three solutions reported. Although these steady states satisfy the convergence criteria, 
“there may be small differences in the necessary make-up flowrates needed to keep these states 
constant and stable”. Therefore, they concluded that (1) the three solutions are not real 
multiplicities but one real (converged) solution and two “pseudo” solutions caused by not tight 
enough convergence criteria, and (2) that “the problem of MSS seems to be associated with the 
numerical aspects related to the relative small amount of entrainer make-up.” However, the 
second conclusion is much too general when compared to the evidence given and counter-
examples have been reported. 
Bossen et al. (1993) [heterogeneous simulations]: Bossen and co-workers also studied the 
heterogeneous EWB mixture for a column including the decanter and the UNIFAC model. In 
one of four steady states they found, the whole profile as well as the decanter compositions lye in 
the homogeneous region. The products of the remaining three profiles have exactly the same 
compositions and flowrates. The only difference between these three profiles is the location of 
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the front of sharp ethanol-benzene composition change (internal state multiplicities). Since these 
three profiles are in very good agreement with the results of Rovaglio et al. (1993), which were 
obtained for UNIQUAC, it is highly probable that the convergence criteria applied in this study 
were not tight enough and thus, only two of the four steady states might be real. 
Gani and Jorgensen (1994) [heterogeneous simulations]: Next, Gani and Jorgensen calculated as 
many as ten solutions for the EWB column from above. However, they do not indicate their 
convergence tolerance, thus not providing sufficient evidence that the solutions were fully 
converged (Widagdo and Seider, 1996).  
Bekiaris et al. (1996) [heterogeneous analysis]: Bekiaris and co-workers extended their analysis, 
which was originally developed for homogeneous systems (Bekiaris et al., 1993), to 
multicomponent heterogeneous azeotropic distillation. They present the first theoretical 
framework to investigate the physical causes of MSS in heterogeneous distillation and to obtain 
quantitative and qualitative predictions of those multiplicities by a necessary and sufficient 
graphical condition. Moreover, they locate the region of feed compositions which will lead to 
MSS in the limiting case used for the analysis. They demonstrate how particular configurations 
(e.g. the presence or absence of a decanter, total or partial reboiler and condenser, tray 
efficiencies. . . ) affect the presence or absence of multiplicities. Finally, the multiplicities for the 
EWB mixture are analyzed and the most important results are verified by simulation. It was 
shown that three steady states exist in some interval of the product flowrates (one homogeneous 
and two heterogeneous). 
 
2.1.4. Experimental Verification of Multiple Steady States 
 
Up to this point, two general classes of multiplicities have been analyzed and supported by 
simulation studies: those analyzed by Jacobsen and Skogestad (1991) and those by Bekiaris and 
co-workers (1993; 1996). In this section, experimental evidence is reported for both types. 
Kienle et al. (1995) [homogeneous experiments]: Kienle and co-workers exclusively study the 
first type of the multiplicities reported by Jacobsen and Skogestad (1991). Consequently, they 
apply their methods from nonlinear wave propagation theory to the [LV, VN] configuration of a 
column separating an ideal mixture of methanol and propanol. For single column sections of 
infinite length, a unique steady state is reported for molar inputs but three steady states may exist 
for volumetric inputs. Unfortunately, the procedure for combining the results from the rectifying 
and stripping sections is not reported and only a numerical analysis is performed. By this, a 
region with MSS is elaborated in the two- parameter space by stage-by-stage calculations of a 
model including heat effects and using the volumetric reflux, LV , and the reboiler heat duty, Qr, 
as the parameters. Then, this type of MSS was verified in an experiment. Using the [L=D,Qr] 
configuration, it was demonstrated that the same value of a volumetric reflux flowrate 
corresponds to three different values of the reflux ratio (nonlinearity in the input 
transformations). Operating the column in [LV ,Qr], they were able to start the plant up to one of 
the two stable steady states in the flowrate multiplicity interval. During the experiment, the plant 
was temporarily disturbed to obtain the second of the two stable steady states. Finally, the 
original operating point was recovered. Therefore, the existence of two stable steady states for 
the same specifications, caused by nonlinearities in the input relationship, was experimentally 
verified. 
Koggersbøl et al. (1996) [homogeneous experiments]: The authors also study multiplicities 
caused by the nonlinear input transformations in the [LV, VN] configuration (Jacobsen and 
Skogestad, 1991). They argue that instability may not necessarily lead to output multiplicities. In 
the experiments, two branches of steady states were measured over some interval of the 
operating parameter, but instability of either of these branches could not be verified. 
Güttinger et al. (1997) [homogeneous experiments]: Güttinger and co-workers presented the first 
experimental study showing the existence of MSS caused by the VLE for the homogeneous 
mixture of methanol, methyl butyrate, and toluene (MMBT system). The experiments on an 
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industrial pilot column show two stable steady states for the same feed flowrate, composition and 
quality and the same set of the operating parameters (output multiplicities). The measurements 
are in excellent agreement with the predictions obtained from the ∞/∞ analysis (Bekiaris et al., 
1993), as well as with stage-by-stage simulation results. For more details on the experiments the 
reader is referred to Chapter 5. 
Wang et al. (1997) [heterogeneous experiments]: The authors perform experiments using a 
laboratory sieve plate distillation column operating on a heterogeneous mixture of isopropyl 
alcohol, cyclohexane and water. Unfortunately, the plant made use of an organic surge tank in 
the entrainer reflux flow whose level was controlled by varying the entrainer make-up flowrate. 
Therefore, the entrainer make-up is not the same for the steady states measured, i.e., constant 
inputs are not achieved and consequently, the conclusion that steady-state multiplicities have 
been measured is erroneous. Instead, the simulations and the laboratory experiments show high 
parametric sensitivity to the entrainer make-up (Rovaglio et al., 1993). Moreover, oscillations in 
the closed-loop operation of the plant were observed but could not be verified by dynamic 
simulation. 
Müller and Marquardt (1997) [heterogeneous experiments]: In their work, the authors apply the 
procedure (analysis, simulation and experiments) reported by Güttinger et al. (1997) to the 
heterogeneous mixture of ethanol, water and cyclohexane (instead of a homogeneous mixture). 
First, the ∞/∞ analysis for heterogeneous mixtures was applied to predict the existence of MSS 
caused by the VLLE (Bekiaris et al., 1996). In comparing the MSS interval for volumetric and 
molar specification of the distillate flowrate, it can be seen that singularities in the input 
relationship cause the MSS interval to be smaller (Jacobsen and Skogestad, 1991), but still 
significant enough to be measured on a volumetric basis. In the experimental part, Müller and 
Marquardt tracked the two stable solution branches whose compositions favourably compare to 
the results obtained from the steady- state simulations. The unstable branch was not measured 
due to operational problems in the decanter. Moreover, they report dynamic measurements of the 
hysteresis behaviour induced by the existence of MSS. 
Dorn et al. (1998) [homogeneous experiments]: Dorn and co-workers continued the experimental 
investigation by Güttinger et al. (1997) for the same homogeneous mixture (MMBT). Despite of 
the two stable solutions already reported, their experiments on a different pilot plant verified the 
existence of a third, unstable steady state, which was stabilized with PI-control. The steady-state 
experiments are shown to be in good qualitative agreement with the theoretical predictions and 
the stage- by-stage simulation results. Furthermore, the transition from an unstable to a stable 
operating point was realized in the pilot plant when the control action was removed. 
 
2.1.5. Various Studies on Multiple Steady States 
 
Sridhar (1997) [heterogeneous analysis]: Sridhar's second study is based on Sridhar (1996) and 
concludes that “rigorous analysis is used to demonstrate that the cause for the existence of 
solution multiplicities in multistage separation process problems involving the standard 
specification is the tendency of the mixture to exhibit a second liquid phase”. This conclusion is 
objected here because (1) the analysis, specifically the transformation from the “multistage VP 
problem” to the “standard specification”, is not rigorous; and (2) parts of the analysis are 
contradicted by other literature results. 
Bekiaris et al. (1998) [heterogeneous analysis]: Bekiaris and co-workers study the influence of 
the VLLE on the existence of MSS with the primary focus on the heterogeneous EWB mixture. 
The sometimes contradicting reports on MSS in this system are shown to be caused by the 
different thermodynamic models used and by the fact, that the existence of MSS for this system 
is highly sensitive to the VLLE description. These reports are compared with the ∞/∞ 
predictions, which can directly be obtained from VLLE data without using a probably restricted 
thermodynamic model. Moreover, parameter sets are identified which do not allow a reliable 
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analysis of the EWB system, since fundamental properties of the VLLE are not covered correctly 
(existence of azeotropes and size of the two-phase region). 
For the case of the multiplicities reported by Magnussen et al. (1979), the column profiles 
excellently compare to those predicted for a ∞/∞ tray column without decanter. The differences 
between Magnussen's results and the predictions can be explained from a thermodynamic point 
of view and hence, the authors conclude that the multiplicities Magnussen reported are of the 
same type as those analyzed by Bekiaris et al. (1996). 
Moreover, they show that two of the three operating regimes reported by Prokopakis and Seider 
(1983b) for a column with decanter are similar to the profiles obtained from the ∞/∞ predictions 
including a decanter. In addition, the study enlightens the results published by Kovach III and 
Seider (1987a; 1987b), Venkataraman and Lucia (1988), and Kingsley and Lucia (1988). 
 
2.2 MSS in Reactive Distillation 
 
Pisarenko et al. (1987) and Karpilowski et al. (1997) [analysis and simulations]: The first report 
on output multiplicities in reactive distillation was published by Pisarenko et al. (1987) who 
analyzed a single-product reactive distillation column. They were able to obtain three steady-
state solutions for the same inputs and operating parameters by simulation; two of them were 
stable and one unstable. Recently, Karpilowski et al. (1997) continued their study and developed 
a mathematical analysis of single-product column multiplicities which is based on the limiting 
case of infinite reflux. However, their method is not likely to be extendible to classical two-
product columns. It was successfully applied, however, to the production process of butyl 
acetate. 
Nijhuis et al. (1993) and Jacobs and Krishna (1993) [simulations]: In 1993, two simulation 
studies appeared at almost the same time showing multiple steady states for the reactive 
distillation process of MTBE and two similar industrial column setups. By variation of the 
methanol feed tray location, Nijhuis et al. (1993) were able to find several feed tray locations 
where two different steady states exist (using a steady-state process simulator). Further 
simulations for constant feed locations but varying reflux flowrate or varying catalyst amount 
confirmed that the multiplicities obtained were not an artifact. 
Both contributions made a first attempt to address the physical causes responsible for the 
existence of output multiplicities in this process. These arguments have been questioned by 
Güttinger and Morari (1997) where a more detailed analysis of the physical causes can be found. 
Ciric and Miao (1994) [simulations]: Ciric and Miao turned the attention to the irreversible 
production of ethylene glycol in a single-product reactive column. Their bifurcation calculations 
showed a large regime with three steady states and a small region of switch-back multiplicities. 
Extensive case-studies showed that the existence of MSS for the glycol process is quite robust 
against variations of the feed location, the hold-up distribution, the presence of the side-
reactions, and the heat of reaction. 
Hauan et al. (1995) [simulations]: Then, the attention turned back to the MTBE process where 
Hauan and co-workers were able to reproduce the results of Jacobs and Krishna (1993) under the 
assumption of chemical reaction equilibrium. They presented a very detailed mechanistic 
explanation of the phase behaviour at the stable steady states for feed tray locations in the 
interval showing the multiplicity. Moreover, they rigorously explained the resulting behaviour on 
the two steady-state branches but were not able to predict why a steady-state multiplicity exists 
in this process. 
Sundmacher and Hoffmann (1995), Schrans et al. (1996) and Hauan et al. (1997) [simulations]: 
At about the same time, Sundmacher and Hofimann observed oscillations in their laboratory 
column operating on the MTBE reactive distillation system. Surprisingly, even the non-reactive 
binary mixture methanol-isobutene showed similar oscillations and the authors associated the 
thermodynamics of this binary mixture with the occurrence of the oscillations. Oscillations for 
feed composition steps and steady-state multiplicities for the reactive MTBE system have further 
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been demonstrated by dynamic simulations of the “Nijhuis” column (Schrans et al., 1996; Hauan 
et al., 1997). Schrans et al. (1996) first reported that there are three steady states possible for the 
MTBE system, two of them stable and one unstable. 
Bravo et al. (1993) and Mohl et al. (1997) [simulations]: Recently, Mohl et al. (1997) did 
bifurcation calculations for the “Nijhuis” column and showed that MSS disappear at low reflux 
values but still exist at high reflux. However, no oscillations were observed in the dynamic 
transitions between the different steady states in the multiplicity interval. This contradicts the 
previous results since both studies performed step disturbances in the feed composition. MSS 
have further been demonstrated for the industrial production of TAME (Bravo et al., 1993; Mohl 
et al., 1997). 
Pilavachi et al. (1997) [simulations]: The effect of different thermodynamic models and 
parameters on the existence of MSS for the “Nijhuis” and the “Clausthal” columns was studied 
by Pilavachi et al. (1997). Accordingly, MSS in the MTBE process depend critically on the 
correct representation of the reactive equilibrium but are more robust against the VLE model, see 
also Okasinski and Doherty (1997b).  
After those simulation studies two approaches have been published for the prediction of multiple 
steady states in reactive distillation.  
Gehrke and Marquardt (1997) [analysis]: Gehrke and Marquardt presented a numerical method 
to calculate column multiplicities based on a single-stage model by a singularity theory 
approach. Qualitatively correct predictions were obtained for the ethylene glycol column studied 
by Ciric and Miao (1994). However, their approach is computationally intensive, especially if 
high-order singularities must be found. 
Güttinger and Morari (1997) [analysis]: Conversely, Güttinger and Morari (1997) presented a 
first approach to extend the ∞/∞ analysis of Bekiaris et al. (1993) to reactive distillation systems. 
By the use of reactive residue curves and the transformation of Ung and Doherty (1995e), they 
were able to predict the existence of MSS by graphical methods. They demonstrated that the 
multiplicities in the MTBE process can either be caused by the nonlinear relationship of the input 
transformations or by the reactive vapour-liquid- equilibrium. The ∞/∞ singularity analysis 
provides the necessary tools for determining the influence of the column configuration on the 
existence of MSS. 
Sneesby, Tadé and Smith (1997) and Bartlett and Wahnschafit (1997) [simulations]: The 
existence of type Ia MSS in the MTBE process has further been shown by Sneesby and co-
workers. Moreover, Bartlett and Wahnschafit performed a control study for an MTBE column 
operating in the multiplicity interval. 
Güttinger and Morari (1998a; 1998b) [analysis]: In a series of two papers, the ∞/∞ analysis to 
predict multiple steady states in equilibrium reactive distillation has been developed for columns 
where the reactions take place in the entire column (“non-hybrid” columns) and for columns 
with a reacting core (“hybrid” columns). Using the transformation of Ung and Doherty (1995e), 
a method was presented to predict the existence of output multiplicities based on the reactive 
vapour-liquid equilibrium for the limiting case of non-hybrid columns of infinite length operated 
at infinite internal flows. By locating all possible profiles and products through a bifurcation 
analysis, qualitative and quantitative predictions have been obtained. The region of feed 
compositions leading to multiple steady states can be constructed graphically applying a 
necessary and sufficient geometrical condition. Through the ∞/∞ singularity analysis, the 
predictions have been extended to cover multiplicities introduced by the nonlinear relationships 
between transformed, molar, mass and volumetric flowrates. 
Moreover, Güttinger (PhD thesis, 1998) has introduced two procedures to extend the predictions 
to hybrid columns: by an exact method, similar results were obtained for hybrid columns as for 
non-hybrid ones: prediction of the product paths, of the existence of output multiplicities and of 
the region of feeds leading to multiple steady states. The applicability of this method to finite 
columns was demonstrated for an example system where the existence of a new type of 
multiplicities, which is caused by the interactions of reactive and non-reactive column sections. 
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An approximate method estimates the hybrid product paths and can be used to draw conclusions 
on the steady-state behaviour of a finite hybrid column. 
However, the procedure of infinite/infinite analysis has not been applied to non chemical 
equilibrium systems, which is the object of the present study.  
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Chapter 3. Multiple Steady States in Reactive Distillation  - Non-
Hybrid  ∞/∞ Analysis 
 
A method is presented to predict the existence of output multiplicities for reactive equilibrium 
distillation columns, where the reactions take place in the entire column (“non-hybrid” columns). 
As necessary prerequisites for this method, conditions for feasible reactive column profiles in the 
∞/∞ case need to be derived. Then, the reactive ∞/∞ analysis can be formulated analogously to 
the non-reactive cases (Güttinger and Morari, 1998a). 
 
3.1 Introduction to Reactive Distillation 
 
3.1.1 Motivation 
 
During the last decade, the reactive (catalytic distillation (RD)) has gained increasing 
importance. Some processes in the chemical and petrochemical industries have been 
significantly improved by the use of reactive distillation technology, e.g. the production of fuel 
ethers (DeGarmo et al., 1992). In the end, the motivation for implementing RD processes in 
industry is always of an economical nature, since capital and operating costs of a plant must be 
minimized. 
The synergies encouraging the combined use of reaction and separation can be assigned to either 
chemistry or separation in most cases. In terms of chemistry, conversion and yield of the desired 
product can often be improved by RD. This is achieved by carrying equilibrium limited reactions 
to completion or by the boiling point temperatures shifting the chemical equilibrium 
(Venkataraman et al., 1990; DeGarmo et al., 1992; Doherty and Buzad, 1992). Side-reactions 
can be suppressed by feeding one reactant in excess (increasing yield) and unfavourable 
thermodynamics may be overcome (Doherty and Buzad, 1992; Isla and Irazoqui, 1996; 
Okasinski and Doherty, 1997a). Examples of processes which have profited from chemistry-
based synergies are the production of MTBE (methyl-tert-butyl-ether), TAME (tert-amyl-
methyl-ether) and esterification reactions (methyl- or ethyl-acetate). In terms of separation, 
close-boiling mixtures have been one of the driving forces in the development of RD processes. 
Additionally, these processes often allow to overcome non-reactive azeotropes and distillation 
boundaries (Barbosa and Doherty, 1988c). The inherent direct heat integration of a distillation 
column utilizes the heat of reaction for evaporating the liquid phase (Grosser et al., 1987; 
Sundmacher et al., 1994). However, there are certainly other issues to consider in the evaluation 
of RD processes, e.g. control problems (Bartlett and Wahnschafit, 1997). 
 
3.1.2 Assumptions, Definitions and Literature 
 
All RD processes are rate-based in nature and kinetic considerations may have to be included in 
the design of processes undergoing slow reactions. Comparisons of the applicability of rate-
based and equilibrium models to reactive distillation have been given by Serafimov et al. (1993) 
and Pilavachi et al. (1997). 
Hybrid columns are distillation columns with a reactive core, i.e., they are built from a reactive 
column section where the catalyst is present and one or more non-reactive sections (rectifying 
and/or stripping sections). Consequently, non-hybrid columns denote columns where all trays 
including condenser and reboiler are reactive (Figure 3.1). Commonly, hybrid columns are 
resulting from the use of a heterogeneous (solid) catalyst, whereas a homogeneous (liquid) 
catalyst would lead to a non-hybrid column design. 
Most of the pioneering work in the areas of equilibrium RD thermodynamics and design is based 
on transformations of the physical compositions (Zharov, 1970; Barbosa and Doherty, 1988c). 
Barbosa and Doherty (1988a) presented design and minimum reflux calculations for single-
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reaction systems. Using a generalized version of the composition transformations Ung and 
Doherty (1995d) extensively analyzed the synthesis of RD systems with multiple reactions by 
graphical design methods based on reactive residue curves. 
 

 
Figure 3.1: Non-hybrid (a) and hybrid (b) reactive distillation columns. The hybrid 

column corresponds to the design used by Nijhuis et al. (1993). 
 
Espinosa and coworkers studied the design of reactive columns with inerts present and columns 
with a reacting core, i.e., hybrid columns (Espinosa et al., 1995a, b; 1996).  
 
3.1.3 Multiple Steady States in Reactive Distillation  
 
Because of the occurrence of reactive azeotropes, many characteristics of RD processes are very 
similar to those observed in (non-reactive) azeotropic distillation. Among the unusual features of 
both azeotropic and reactive columns, multiple steady states (MSS) have been discovered. 
Definition 1 of “Multiple Steady States in Single Columns” (chapter 1) can equally be applied to 
reactive distillation systems. Moreover, the definitions of input and (internal) state multiplicities 
as well as the concept of column configurations carry over to reactive distillation. 
This approach comprises of a description of the thermodynamic requisites for the reactive ∞/∞ 
analysis. The methods sketched by Güttinger and Morari (1997) are extended and presented in 
detail by Güttinger (PhD thesis, 1998) for non-hybrid columns, developing also prediction 
methods for hybrid columns. The ∞/∞ case refers to distillation columns of infinite length (with 
an infinite number of equilibrium stages) operated at infinite internal flows (Petlyuk and 
Avet'yan, 1971; Bekiaris et al., 1993). For reactive ∞/∞ columns there is the additional requisite 
of infinite catalyst activity on each tray of the reactive section to achieve equilibrium reactions. 
The ∞/∞ analysis can be fully expanded to reactive systems, and prediction tools for the 
occurrence of multiplicities are developed. 
So far, four physical phenomena have been found to give rise to output multiplicities in 
azeotropic and reactive distillation: 
I. Jacobsen and Skogestad (1991) reported two different types of multiplicities in binary 
distillation columns with ideal vapour-liquid-equilibrium (VLE): 

a) For constant molar overflow (CMO) and the [LM, VN] configuration, multiplicities can 
occur due to the nonlinear relationship between mass and molar flowrates (or volumetric 
and mass flowrates or heat duties and molar flowrates). This behaviour is not expected 
for binary systems with configurations involving a product flowrate, e.g. [DM, VN]. 
Experimental studies have been reported by Kienle et al. (1995) and Koggersbøl et al. 
(1996). 



 35

b) Multiplicities can further be caused by the presence of energy balances in the [LN, V N] 
configuration of ideal binary columns (Jacobsen and Skogestad, 1991; Häggblom, 1996). 

Type I multiplicities have also been shown for more complex distillation systems, e.g. 
multicomponent azeotropic or even reactive distillation (Güttinger and Morari, 1997; Güttinger 
and Morari, 1998b). 
II. This type of output multiplicities is caused by the underlying reactive or non-reactive VL(L)E 
and also occurs for CMO conditions. 

a) The existence of output multiplicities caused by the non-reactive VL(L)E was studied by 
Bekiaris et al. (1993) for homogeneous and by Bekiaris et al. (1996) for heterogeneous 
mixtures (∞/∞ analysis). These multiplicities have been verified experimentally for a 
ternary homogeneous and a heterogeneous system (Güttinger et al., 1997; Müller and 
Marquardt, 1997; Dorn et al., 1998). In reactive distillation, this type of MSS is caused 
by the reactive VLE and can occur in non-hybrid as well as in hybrid columns (Güttinger 
and Morari, 1998a; 1998b). 

b) In hybrid reactive distillation columns, MSS can occur due to the interactions between 
reactive and non-reactive column section (or the reactive and non-reactive VLE). This 
type of MSS was analyzed by Güttinger and Morari (1997; 1998b). 

 
 
3.2 Non-Hybrid Column Profiles 
 
3.2.1 Reactive Composition Transformation 
 
In reactive equilibrium of a c component mixture, the reachable compositions form a subspace of 
lower dimension in the physical composition space, the “reaction space” (Bessling et al., 1997). 
The dimension of the subspace is given by the degrees of freedom from the extended Gibbs 
phase rule (Smith et al., 1996): 
 

r-c-2freedom of Degrees += π         (3.1) 
 
where π is the number of phases and r the number of reactions present. Thus, a homogeneous 
non-reactive system in vapour-liquid equilibrium has c degrees of freedom. Each linearly 
independent reaction reduces the dimension of the reaction space by one. Bessling et al. (1997) 
presented illustrations of the physical space and the reaction space for a variety of topologically 
different reactive systems. 
The basic idea to obtain a convenient description of the reactive VLE is to find a set of 
transformed composition variables X which can be used as a basis for the reaction space. The 
new variables should exhibit similar properties as the mole fractions in the physical composition 
space (e.g. sum to unity). Such a transformation has first been published by Zharov (1970) for 
isothermal open-evaporation processes. The transformations were rediscovered by Barbosa and 
Doherty (1988c) and refined by Ung and Doherty (1995e) and Espinosa et al. (1995a). This work 
is based upon the transformation of Ung and Doherty (1995e), which can be applied to any 
number of reactive and inert components and to any number of independent reactions r: 
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In a similar way, molar flowrates can be transformed (P denotes any of the streams D, B, Fi, L or 
V, see Figure 3.1): 
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ND xPP 11 −−= υυ          (3.3) 
 
The transformed compositions X exhibit the following properties (Ung and Doherty, 1995c; Ung 
and Doherty, 1995e): 

1. X expresses the conservation of mass for any value of the extent of reaction; they are 
reaction-invariant compositions. Therefore, X takes the same value for any reaction 
extent of a given liquid mixture. 

2. The X – vector sums to unity. 
3. The transformed representation is canonical in the sense that it does not depend on the 

combination of the reaction equations chosen (as long as this combination is linearly 
independent). 

4. Reactive azeotropes occur if and only if X=Y (the transformed liquid composition is 
equal to the transformed vapour composition). A physical explanation of reactive 
azeotropes was given by Barbosa and Doherty (1988b). 

5. The reaction space is always a convex polyhedron but not necessarily a “regular” 
simplex. 

 
Zharov (1970) and Ung and Doherty (1995a) derived the equations describing the simple 
distillation (open-evaporation) of an equilibrium reactive system. The reactive residue curves are 
obtained by solving the following differential equation in transformed compositions: 
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ii
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         (3.4) 

 
where τ is the dimensionless “warped” time. Equation (3.4) is identical with the residue curve 
equation for non-reactive systems if the transformed compositions are replaced by molar ones. 
Therefore, the properties of reactive and non-reactive residue curves are very similar (Ung and 
Doherty, 1995a). The singular points with X=Y correspond to reactive azeotropes, “surviving” 
non-reactive azeotropes or to pure components. They can either be stable or unstable nodes or 
saddles. In addition, reactive distillation regions, reactive boundaries, and reactive distillation 
lines can be defined in an analogous manner (Bessling et al., 1997). 
 
3.2.2 Feasible Non-Hybrid ∞/∞ Profiles 
 
The following feasibility analysis of profiles in the ∞/∞ case is based on a non-hybrid reactive 
distillation column (Figure 3.1a). Ung and Doherty (1995d) derived the equations describing the 
operating lines (material balances) of such a non-hybrid column. They showed that the equations 
for the rectifying and stripping sections are identical to those for non-reactive columns if all 
molar compositions and flowrates in the latter are replaced by their transformed analogues. 
Moreover, the overall material balances maintain their form in transformed coordinates (the unit 
base of flow will be denoted by superscript D for transformed, N for molar, M for mass or V for 
volumetric flowrates): 
 

BDDDFD

DDD

XBXDXF
BDF

+=

+=          (3.5) 

 
Thus, most of the standard tools for column design and sequencing can be applied directly to 
equilibrium reactive systems. 
A reactive distillation column profile is feasible, if the feed, distillate and bottom compositions, 
in transformed coordinates, all lie on a straight line. This necessary condition corresponds to the 
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well-known lever rule. At infinite reflux, the composition profile of a packed non-reactive 
distillation column must coincide with some part of a non-reactive residue curve, the profile of a 
tray column with some part of a non-reactive distillation line. Since all column material balances 
have the same form as for non-reactive columns, the following important result carries over by 
analogy: The transformed composition profiles of packed reactive columns coincide with the 
reactive residue curves (Barbosa and Doherty, 1988a), and those of reactive tray columns 
coincide with reactive distillation lines. Moreover, the results of Bekiaris et al. (1996) can be 
easily adapted to reactive systems to study the influence of the condenser and reboiler types 
(partial or total). Since residue curves are a good approximation for distillation lines the analysis 
is based upon on the former (Widagdo and Seider, 1996). 
If a distillation column has infinite length, i.e., an infinite number of equilibrium stages, its 
column profile must contain at least one pinch point (Petlyuk and Avet'yan, 1971). From the 
analogy described above it is obvious that this fact does carry over to reactive columns. Thus, the 
transformed composition profile of a reactive column (section) of infinite length must contain at 
least one pinch point. The only candidate pinch points for reactive columns at infinite reflux are 
the singular points of the reactive residue curve diagram as shown for non-reactive distillation by 
Bekiaris et al. (1993). Therefore, the following conditions are necessary and sufficient for a 
feasible reactive column profile in the ∞/∞ case of a non-hybrid column: 
 
Conditions 1 (Feasibility of Non-reactive ∞/∞ Profiles)  

1. a packed column profile coincides with a part of a residue curve and the profile of a tray 
column coincides with a part of a distillation line;  

2. the distillation lever rule is fulfilled;  
3. the column profile contains at least one pinch point (singular point). 

 
Conditions 2 (Feasible ∞/∞ Non-Hybrid Profiles): 

1. the transformed profile coincides with a part of a reactive residue curve; 
2. the transformed profile contains at least one pinch point (reactive singular point); 
3. the transformed lever rule (3.5) holds. 

 
Note that these conditions are necessary but not sufficient for hybrid columns. 
Since the conditions derived above are completely analogous to those of non-reactive columns, 
the description method for non-reactive column profiles of Bekiaris et al. (1993) can be applied 
directly to reactive profiles. In the ∞/∞ case of a non-hybrid column all feasible column profiles 
(fulfilling the conditions above) belong to one of the following three types: 

I. the light-boiling end (distillate) of the reactive profile is located at a reactive unstable node, 
II. the heavy-boiling end (bottoms) of the reactive profile is located at a reactive stable node, 

III. the reactive profile contains at least one reactive saddle singular point. 
 
It was shown above that the lever rule holds in the transformed composition space (3.5). 
Obviously, such a lever rule does not hold in molar units since the number of moles of the 
components are altered by the reactions. Even the total number of moles will change in the 
general case of non-equimolar reactions, 0≠totυ : 
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The overall material balance in mass units can be written without a reaction term as mass is 
conserved: 
 

MMM BDF +=           (3.7) 
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However, the mass fractions will be altered by the reactions as the mole fractions and the 
component balances in mass units contain a reaction term. Hence, there is no lever rule in mass 
units for reactive columns. In conclusion, the only units where the lever rule holds are the 
transformed compositions and flowrates. These are the units of choice for the description of non-
hybrid reactive distillation columns in the ∞/∞ case. 
 
3.3 Non-Hybrid Reactive ∞/∞ Analysis 
 
3.3.1 Non-Hybrid ∞/∞ Bifurcation Analysis 
 
Next, it is demonstrated that the non-reactive prediction tools of Bekiaris et al. (1993) can be 
extended to non-hybrid reactive distillation columns. The only requisites for the existence of an 
analogous theory are the availability of a lever rule and a method to describe all possible 
composition profiles in the ∞/∞ case of a reactive distillation column. Actually, the conditions 
for feasible column profiles derived in the previous section fulfill these requirements. It is 
important to note that the analysis presented here is only applicable to non-hybrid reactive 
columns (Figure 3.1a), a restriction which will be relaxed later. A homogeneous two-product 
distillation column has two operational degrees of freedom for a given design and given feed 
composition, flowrate and quality. In the ∞/∞ case, the reflux is specified to be infinite and as a 
result, all internal flows are infinitely large. Thus, there is one degree of freedom remaining 
which is chosen to be a product flowrate, e.g. the distillate flowrate. Since transformed units are 
the base for the description of non-hybrid columns, the transformed distillate flowrate DD is 
chosen (BD is determined by equation 3.5). 
The ∞/∞ bifurcation analysis is used to predict output multiplicities of type IIa. By adaptation of 
the definition of the MSS types, these multiplicities are now caused by the reactive VLE. First, 
the limiting case of a distillation column with zero distillate flow is examined, D=0 
(DD=DN=DM=0). By equations (3.5), (3.6) and (3.7), the following statements about the bottoms 
flow can be derived: BD=FD, BM=FM, but BN=FN. In all cases, no distillate is taken out and all 
feeds entering will be leaving in the bottoms after they have reached chemical equilibrium in the 
reactive column. Therefore, the transformed bottoms composition XB will be equal to the 
transformed feed composition XF (by equation 3.5). In molar units, the bottoms composition will 
not be that of the feed but of the feed mixture in chemical equilibrium. For a feasible reactive 
profile the distillate must be located on the low-boiling part of the reactive residue curve 
containing the bottoms (and the feed) such that the profile also contains a reactive pinch point. 
Thus, the distillate is located at the lightest-boiling reactive node of the distillation region 
containing the feed – similarly as for non-reactive columns (Bekiaris et al., 1993). Hence, the 
initial column profile is of type I. 
Second, the following equations hold for the limiting case of zero bottoms product flowrate: 
BD=BN=BM=0 and DD=FD, DM=FM. The bottoms composition XB is that of the heavy-boiling 
reactive node of the distillation region containing the feed, and the transformed distillate 
composition XD is equal to XF, the composition of the feed mixture in equilibrium. The resulting 
column profile is of type II. 
Third, a bifurcation study (continuation of solutions) is performed by tracking the distillate and 
bottoms compositions in the transformed composition space, starting from the profile with DD=0 
and ending at the profile with DD=FD. By this procedure, all feasible transformed composition 
profiles are obtained for the ∞/∞ case of a non-hybrid reactive column. This continuation of 
solutions can be constructed based on physical arguments only, i.e., applying the feasibility 
conditions for reactive profiles and using the reactive residue curve diagram. The continuation 
path is defined as the path generating all possible column profiles. The distillate and bottoms 
compositions along this path form the distillate product path and the bottoms product path. 
Each pair of distillate and bottoms locations, XD and XB, is assigned to a value of the 
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transformed flowrate DD by the lever rule (3.5). Therefore, the distillate and bottoms product 
paths are parameterized by a product flowrate, XD(DD), XB(DD). By plotting the transformed 
compositions XP against the transformed distillate flowrate DD, a series of bifurcation diagrams 
can be constructed. 
If the transformed distillate flowrate is varying non-monotonically along the continuation path, 
multiple steady states exist for the ∞/∞ case of a non-hybrid column and for the transformed 
feed composition studied. Precisely, MSS will then exist for all feeds resulting in the same 
composition in chemical equilibrium, i.e., having the same value XF. 
Because of the analogy described above, the following result from Bekiaris et al. (1993) is 
straightforward for non-hybrid columns. Starting at the initial point (type I profile), the distillate 
flowrate DD is monotonically increasing as all type I profiles are tracked. For the same reason, 
DD is also monotonically increasing as all type II profiles are tracked, ending at the final point 
with DD=FD. Therefore, a decrease of DD can only occur for type III column profiles. 
Furthermore, if DD is varying non-monotonically along the product path, the bottoms flowrate 
BD will also vary non-monotonically (by equation 3.5). Note again that the whole bifurcation 
analysis must be done using transformed compositions and flowrates. To obtain the product 
paths in molar compositions and flowrates, the inverse of the transformation (3.2) and (3.3) must 
be applied (“back-transformation”). Unfortunately, this is a procedure involving numerical 
iteration. 
Importantly, the existence of multiple steady states in transformed flowrates has not been shown 
yet to be necessary and sufficient for multiplicities to exist in other units, i.e., molar or mass 
flowrates. However, the predictions can be extended to cover other units by applying the ∞/∞ 
singularity analysis described below. 
 
3.3.2 Non-Hybrid MSS Feed Region Condition 
 
Multiple steady states exist if the transformed distillate flowrate, DD, is decreasing somewhere 
along the continuation path. A decrease in DD, i.e., the existence of MSS, can be detected by the 
geometrical, necessary and sufficient multiplicity condition. Essentially, this condition takes the 
same form as those developed for single azeotropic columns and column sequences, if the 
reactive continuation path and transformed compositions for the feed and the products are used. 
From the bifurcation procedure and the geometrical condition it is clear that the existence of 
MSS depends strongly on the feed composition XF. All possible transformed feed locations 
leading to multiple steady states in the ∞/∞ case of a non-hybrid column can be determined by 
the MSS feed region condition. The condition is also adapted from the non-reactive ∞/∞ 
analysis. The MSS feed region is defined in the transformed composition space and is suitable to 
test a candidate feed composition xF with respect to the occurrence of MSS. With equations (3.2) 
the transformed feed composition XF (xF ) is obtained and it can be easily checked if it is located 
in the MSS feed region.  
However, sometimes it may be necessary to represent the feed region in the physical 
composition space. Since the transformed feed composition XF is invariant for all mixtures 
reaching the same composition in chemical equilibrium, the equations (3.2) must be fulfilled for 
all physical compositions xF leading to XF. These c-r-1 linearly independent restrictions on the c 
independent physical compositions xF leave ( ) rrcc =−−−− 11 degrees of freedom in xF. By 
multiplication with the denominator of (3.2) a system of equations linear in x is obtained. Since 
all these equations are coupled by the reference components, it is always possible to reduce the 
system by substitution of some x. It can be shown that the system can be reduced to one single 
linear equation relating r+1 of the remaining mole fractions xF and containing the known 
transformed composition XF. Therefore, for each transformed composition XF this equation 
describes a linear geometrical object of dimension r (equal to the degrees of freedom obtained 
above). A straight line is obtained for r=1, a plane for r=2. . . Hence, the MSS feed region in the 
physical composition space is built from straight lines (or planes), each of those belonging to one 
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transformed composition XF contained in the feed region. From the properties of these 
stoichiometric lines it can be concluded that it is sufficient to evaluate the XF on the boundary of 
the MSS feed region to obtain the convex hull of the feed region in physical coordinates 
 
3.3.3. ∞/∞ Singularity Analysis 
 
3.3.3.1 A United Approach to the Prediction of MSS 
 
The ∞/∞ analysis was originally designed to predict output multiplicities for single azeotropic 
columns under the assumption of CMO (Appendix B) and for specifications involving a molar 
product flowrate (Bekiaris et al., 1993; 1996). There are basically two reasons why the prediction 
of MSS needs to be extended to other units than molar ones: First, it is mostly more economical 
to control a flow on a mass or volumetric basis instead of a molar basis for the cost of the 
equipment involved in practice (valves, measurement devices and composition analyzers). 
Second, Jacobsen and Skogestad (1991) demonstrated in their analysis that singularities in the 
input relationships can alter the number of steady states present in CMO columns when 
comparing specifications involving molar, mass or volumetric flowrates (MSS of type Ia). For 
the cases where MSS were argued to be undesirable, there is the possibility that they could be 
avoided by selecting an appropriate control configuration, e.g. controlling a mass or volumetric 
product flowrate instead of a molar one. 
Because of the lever rule involved in the bifurcation analysis, the ∞/∞ analysis requires an 
(external) product flowrate in the column configuration. However, the information obtained from 
the ∞/∞ analysis can be used to extend the predictions to column configurations involving a 
mass or volumetric product flowrate. Even though Jacobsen and Skogestad concluded that MSS 
are unlikely in such configurations for ideal binary systems, e.g. for [DM, VN], there is no 
evidence that this finding carries over to multicomponent or azeotropic systems. The 
combination of the original ∞/∞ analysis with its extension to non-molar flowrates, the ∞/∞ 
singularity analysis, results in a unified method to predict MSS of types Ia and II for the ∞/∞ 
case of a column under CMO (Güttinger and Morari, 1997). 
 
3.3.3.2 The Product Singularity Functions 
 
For column configurations involving a molar product flowrate, the feasible product paths can be 
determined in the molar composition space for ∞/∞ columns and a (ternary) homogeneous or 
heterogeneous mixture by the ∞/∞ bifurcation analysis (Bekiaris et al., 1993; 1996). Using these 
∞/∞ predictions, specifically the compositions xD and xB as functions of DN (or BN), a 
bifurcation diagram can be constructed with one product flowrate, DN, as the bifurcation 
parameter. MSS exist if the product flowrate varies non-monotonically along the continuation 
path. Hereafter, a product path parameterized by a molar product flowrate is denoted by xP (PN), 
where P is any column product (D or B). 
In principle, the molar, mass and volumetric product flowrates are related by: 
 

( )PNM xWPP =           (3.8) 
( )PP

l
MV TxPP ,ρ=           (3.9) 

 
where W(xP) is the molar weight of a mixture and ρl(xP; TP) the liquid density. Note that xP and 
TP on a bifurcation path are functions of the product flowrate P. The derivatives of equations 
(3.8) and (3.9) are the product singularity functions: 
 

( ) ( )
N

P
NP

N

M

NM dP
xdWPxW

dP
dP

+==Σ ,        (3.10) 



 41

( ) ( )
( )

M

PP
l

PP
l

M

PP
l

M

V

MV

dP
Txd

Tx
P

Tx
          

dP
dP

,

,,
1

2

,

ρ

ρρ
−=

==Σ

      (3.11) 

 
In Figures 3.2 and 3.3, the four possible types of singularities are illustrated. On the left, the 
product path of a product P obtained from the ∞/∞ predictions is plotted versus the flowrate of 
the stream in two different units of measure, P1 and P2. For example, P1 and P2 could be DM and 
DN, respectively, to depict the distillate product path xD(DN) versus the mass and molar distillate 
flowrates 
 

 
Figure 3.2. Illustration of the first two of four possible types of singularity functions Σ 

 
The derivative of this curve is the product singularity function 2,1Σ , e.g. equation (3.10), which is 
shown on the right of the Figures. Each of the two product paths can be analyzed with respect to 
specification of either the flowrate P1 or P2 or the four cases shown in Figures 3.2 and 3.3 can be 
distinguished: 
 

(a) No singularities occur and no MSS exist for either specification of P1 or P2. The 
qualitative behaviour remains unchanged and the singularity function 2,1Σ does not 
intersect zero. 

(b) Singularities occur and MSS exist for P1 but not for P2. The multiplicities disappear or 
reappear depending on the direction of the input transformation. The singularity function 
crosses zero at the limit (turning) points ^. 

(c) Singularities occur and MSS exist for both specifications, but with different limit points * 
and ^. The singularity function crosses zero four times: At the limit points * it jumps 
from +∞ to −∞, and at the limit points ^ it is continuous and intersects zero. The 
multiplicities are qualitatively different in units of P1 and P2 because the limit points do 
not coincide. 

(d) Degenerated case (c) with identical limit points and MSS existing in both flowrate units. 
The singularity function is not intersecting zero but jumping from a positive finite value 
to a negative finite value and vice versa. The multiplicity intervals are identical from a 
physical point of view. 
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Figure 3.3. Illustration of the last two of four possible types of singularity functions Σ 

 
3.3.3.3 Calculating Singularities in Practice 
 
The results above lead to the question how the singularity analysis would be performed in 
practice. In order to obtain the ∞/∞ predictions for a column configuration involving a mass 
product flowrate, NM ,Σ from equation (3.10) has to be evaluated. This requires information about 
xP and PN for both products D and B, i.e., it needs exactly the information obtained from the 
original ∞/∞ analysis. By plotting the singularity function 2,1Σ versus DN and BN, respectively, 
one can determine which of the four cases from Figures 3.2 and 3.3 applies. Therefore, the 
existence of MSS and the multiplicity interval can be predicted for specifications involving a 
mass product flowrate. 
After having obtained the predictions for mass flowrates, the second singularity function, 

MV ,Σ from equation (3.11), can be evaluated. Here, care has to be taken since the density lρ  not 
only depends on the composition xP, but also on the temperature TP at the location of the 
flowrate measurement. Therefore, TP is often not the boiling-point temperature, but a known 
temperature of a sub-cooled liquid. By sequentially evaluating equations (3.10) and (3.11), each 
of the resulting singularity functions will show the behaviour of one of the four cases (a) to (d), 
and the existence of MSS as well as the product flowrate intervals where they occur can be 
determined for the ∞/∞ case of a column. 
 
The following properties of the singularity analysis are noteworthy: 
 

1. It is often difficult to detect a zero intersection when the singularity function rises to 
infinity and switches to minus infinity, e.g. at * in case (c) of Figure 3.3. However, by 
evaluating the inverse, NM ,Σ = 1

,
−Σ NM , these limit points will take the much simpler form of 

the continuous zero intersections at ^ in case (b). Therefore, it is numerically 
advantageous to simultaneously evaluate NM ,Σ  and MN ,Σ  to correctly identify the type of 
a singularity. 

2. In general, the ∞/∞ singularity analysis must be performed for each product flow 
independently to obtain the predictions for specifications involving volumetric flowrates, 
since the overall mass balance does not hold on a volumetric basis (influence of 
temperature). For mass flowrates, however, holds and evaluation of one product flow is 
sufficient. Special care has to be taken for reactive distillation systems. 

3. The ∞/∞ singularity analysis studied can be applied to single (non-reactive) columns, to 
column sequences and to reactive distillation columns, as it only depends on the product 
paths and not on the detailed prediction method used to generate these paths. It will be 
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shown that the results of a singularity analysis play a key role for the existence of MSS in 
the MTBE reactive distillation process. 

4. There is an alternative procedure without direct evaluation of the singularity functions. 
With a similar effort as it is necessary to obtain the singularity functions, the product path 
xP(PN) can be recalculated to get xP(PM) by application of equation (3.8) and by a diagram 
as on the left of Figure 3.2. Then, the multiplicity behaviour could be evaluated 
graphically. 

5. The existence of MSS for different specifications could also be directly studied by 
simulation of a column, but at the cost of much more data and effort needed. The ∞/∞ 
singularity analysis is based solely on the ∞/∞ prediction results obtained from the 
application of graphical methods. 

 
3.3.4. Reactive ∞/∞ Singularity Analysis 
 
The ∞/∞ singularity analysis for non-reactive systems described above, the results, the 
singularity functions (equations 3.10 and 3.11) and the different types of singularities from 
Figures 3.2 and 3.3, directly carry over to reactive columns. Preliminary to the evaluation of the 
singularity functions for the relationships between molar and mass, as well as mass and 
volumetric flowrates, there is one additional relationship to be evaluated in the case of the 
reactive ∞/∞ predictions. From the ∞/∞ analysis the product paths as functions of the product 
flowrates are obtained in transformed variables, XD(DD) and XB(DD), and the existence of MSS 
can be predicted for transformed flowrates. Even though transformed units can hardly be 
implemented in a real distillation column, this result is still useful. In the ∞/∞ case, multiplicities 
of type IIa (caused by the reactive VLE) are mainly governed by the material balances, i.e., by 
the lever rule. For reactive columns, the lever rule is only applicable in the transformed space 
and thus, transformed units are the units of choice to appropriately describe a reactive ∞/∞ 
column. Currently, only the analysis in the transformed space allows to predict whether MSS of 
type IIa are possible for a given feed (MSS feed region condition). 
In order to avoid MSS, one can possibly shift the feed location out of the non-hybrid MSS feed 
region. However, if the feed cannot be changed for some reason, if MSS are unavoidable to 
match the product specifications or if MSS are economically attractive, it would be more 
important to predict the existence of MSS for practical relevant specifications, e.g. for molar, 
mass or volumetric flowrates. This is where the singularity analysis comes in. Without loss of 
generality, any of the distillate and bottoms products will be denoted by P and the corresponding 
reactive product paths by XP (PD). 
Starting from the results of the bifurcation analysis with respect to PD, it is possible to predict 
MSS for molar (PN), mass (PM) or volumetric flowrates (PV) for the ∞/∞ case of a reactive 
column. This means that the ∞/∞ predictions are extended to cover also type Ia multiplicities, 
i.e., singularities in the input relationships (Jacobsen and Skogestad, 1991). In addition to the 
equations relating molar, mass and volumetric flowrates, (3.8) and (3.9), the following relation 
between transformed and molar flowrates is obtained from the transformation equation (3.3): 
 

( )( ) DP
refref

T
tot

N PxP
111

−−−= υυ         (3.12) 
 
Again, xP on a bifurcation path is a function of the product flowrate PD. By taking the derivative 
of the equation, a product singularity function in addition to (3.10) and (3.11) is obtained: 
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Note that the complexity of expression (3.13) is caused by its general formulation and that the 
equation is much simpler for a specific transformation. Importantly, the four possible types of 
singularities shown in Figures 3.2 and 3.3 and the corresponding argumentation can equally be 
applied to DN ,Σ .  
These results lead to the question how the procedure to calculate singularities in practice from 
non-reactive systems has to be changed for reactive columns. First DN ,Σ  has to be evaluated to 
obtain the ∞/∞ predictions for specifications involving a molar product flowrate. However, the 
evaluation of equation (3.13) requires the knowledge of the physical compositions x and hence, 
back-transformation has to be carried out. This is a major drawback of the singularity analysis 
for reactive systems. 
After having obtained the predictions for molar flowrates, the procedure continues completely 
identical as for non-reactive systems: The singularity functions NM ,Σ and MV ,Σ are evaluated one 
after the other. Note that the physical compositions x and the temperature T are known (either by 
design or from the back-transformation). 
Important properties of the singularity analysis have been studied for non-reactive systems and 
apply to reactive systems as well. Most important, the singularity analysis has to be done for 
each product flow independently to obtain the predictions for specifications involving molar 
flowrates, since the reaction term in (3.6) can cause MSS to exist in one product flow but not in 
the other. 
 
3.3.5. Non-Hybrid ∞/∞ Predictions: Inputs and Results 
 
Prior to summarizing the results obtained from the reactive ∞/∞ bifurcation and singularity 
analyses, the necessary information to obtain the ∞/∞ predictions is discussed. Basically, the 
information needed is of the same type as for the non-reactive analysis, i.e., the boiling points 
and locations of the azeotropes and the distillation boundaries (if there are any). However, in 
contrast to the widely available databases for non-reactive azeotropes, the existence and location 
of reactive azeotropes is rarely known in advance, because they depend not only on the VLE but 
also on the reaction equilibrium (Okasinski and Doherty, 1997b). Therefore, a reliable VLE and 
reaction equilibrium model has to be available and a reactive residue curve diagram has to be 
calculated for a mixture of interest. Moreover, a composition transformation has to be found for 
the stoichiometry of the reactions in the mixtures. After having solved the differential-algebraic 
equation system, all necessary information can be read from the reactive residue curve diagram. 
It is important to note that the predictions depend only mildly on the specific column design. 
The only information needed is the type of the column internals (trays or packing) as well as the 
types of condenser and reboiler to appropriately select reactive distillation lines or residue 
curves. 
From the ∞/∞ analysis for non-hybrid reactive systems, the following information can be 
obtained: 
Existence of Multiplicities: The existence of multiple steady states caused by the reactive VLE 
can be predicted in the ∞/∞ case of a non-hybrid reactive distillation column and a given feed by 
the geometrical, necessary and sufficient multiplicity condition. 
Non-hybrid MSS Feed Region: For any non-hybrid system, the region of feeds that lead to output 
multiplicities in the ∞/∞ case can be predicted in transformed coordinates. Determining the 
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corresponding region in the physical composition space is straightforward and does not require 
back-transformation. 
Quantitative Predictions: For any non-hybrid system and a given feed all possible column 
profiles can be located in the transformed composition space by performing a continuation of 
solutions. From the product paths obtained by the continuation, bifurcation diagrams can be 
constructed and the limit points as well as the product flowrate multiplicity range (the interval of 
the product flowrate where MSS exist) can be determined. 
Singularity Analysis: By performing a series of singularity analyses, the predictions obtained for 
transformed flowrates are extended to specifications involving molar, mass or volumetric 
flowrates. Qualitative and quantitative changes in the multiplicity behaviour are detected. This 
means that the ∞/∞ predictions are expanded to also cover the type Ia multiplicities studied by 
Jacobsen and Skogestad (1991). However, since the analysis requires that one product flowrate is 
used for the specification, the [L; V] configurations studied by Jacobsen and Skogestad (1991) 
cannot be taken into account. 
Hence, the methods presented allow the simultaneous prediction of output multiplicities caused 
by the reactive VLE (type II) and by the nonlinearities in the flowrate relationships (type Ia). 
 
3.3.5 Implications for Finite Reactive Columns 
 
The ∞/∞ case is the limiting case of high reflux, fast reactions and a large number of 
equilibrium stages. Therefore, if MSS are predicted by the geometrical condition for a given 
feed, these multiplicities will also exist for columns with sufficiently large reflux, sufficiently 
fast reactions and a large number of stages. However, the “critical design” where MSS disappear 
can not be predicted. Since the geometrical condition is only sufficient for finite columns, there 
may be multiplicities in finite columns which cannot be predicted using the ∞/∞ analysis, e.g. 
those related to heat effects (type Ib). Similarly, the MSS feed region is affected for finite 
columns. From experience, the feed region for finite but large columns is smaller than in the ∞/∞ 
case. If the reflux and the number of equilibrium stages are decreased, the MSS feed region 
collapses and the multiplicities disappear (Bekiaris and Morari, 1996). 
These observations have the following consequences if the existence of MSS is questioned for a 
given finite non-hybrid column and a given feed. First, if the feed lies inside the non-hybrid MSS 
feed region, MSS will exist for transformed flowrates and a sufficiently large column operated at 
large internal flows. In principle, they could disappear for molar or mass flowrates by 
singularities in the corresponding relationships although this has not been observed in any of the 
studies. Secondly, MSS of type II will not exist for a feed outside the non-hybrid MSS feed 
region (in transformed coordinates). However, singularities in the relationship between 
transformed and molar flows seem to play an important role if the feed is located close to the 
non-hybrid MSS feed region and can result in a MSS feed region in molar coordinates different 
from the transformed one. Even though they are theoretically possible, singularities between 
molar and mass flows have not been reported for points outside the MSS feed region (in 
transformed coordinates) and for non-hybrid columns. Nevertheless, the existence of MSS of 
type Ia strongly depends on the column configuration. 
 
3.4. Reactive ∞/∞ Procedures 
 
3.4.1 Reactive Geometrical Multiplicity Condition 
 
In this section the geometrical, necessary and sufficient, multiplicity condition is adapted from 
the case of single columns. The extension of the condition to reactive systems is straightforward 
if the transformed continuation paths and the transformed feed composition are used. If a 
continuation path is defined as the path generating all possible column profiles starting at DD=0 
and ending at DD=FD, MSS result when the transformed distillate flowrate is decreasing 
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somewhere along this path. Note that subscripts are used for indexing different steady states in 
this case. 
Pick a pair of transformed product compositions XD

1 and XB
1 from the path which are connected 

by a type III profile, i.e., the profile runs over at least one reactive saddle singular point. Thus, 
these product locations will be located on a reactive distillation boundary or on the edges of the 
transformed composition space (Figure 3.4). Now pick XD

2 and XB
2 sufficiently close to XD

1 and 
XB

1 such that the new column profile corresponds to a “later” profile on the continuation path. 
For the existence of multiple steady states it is required, as one moves along the continuation 
path from the product locations 1 to 2, that the line passing from XD

1 parallel to XB
1 XB

2 crosses 
the XD

2 XB
2 line segment at I. 

This formulation of the geometrical multiplicity condition can be applied to four entirely 
different column types with minor modifications: homogeneous and heterogeneous azeotropic 
columns, column sequences and non-hybrid as well as hybrid reactive distillation columns. 
 
3.4.2 Non-Hybrid MSS Feed Region Construction 
 
The construction procedure for the MSS feed region was adapted from Bekiaris et al. (1996). 
From all possible product paths in the ∞/∞ case the segments for which the products are 
connected by a type III profile are investigated. It is sufficient to consider type III profiles only 
for the construction of the MSS feed region, since the product flowrates can only vary non-
monotonically for such profiles. 

 
Figure 3.4. Illustration of the geometrical, necessary and sufficient multiplicity condition for 

reactive distillation columns. 
 
For each possible segment of the path of type III profiles the procedure is performed as 
following: 

1. Pick a transformed product location from a product path, e.g. XD. 
2. Find the set containing all other product compositions XB such that the geometrical 

condition is satisfied for the picked XD and name this set S(XD). Note that S(XD) is 
always part of a reactive distillation boundary or the edges of the transformed 
composition space and that it may contain an inflexion point and/or it may consist of 
more than one non-connected boundary segments. 

3. Draw the straight lines connecting XD with the end points of each of the boundary 
segments belonging to S(XD). 

4. For the XD chosen, the appropriate feed composition is the union of the areas enclosed by 
each boundary segment that belongs to S(XD) and the corresponding straight lines 
connecting the end points of the segment with XD. Name this union A(XD). 
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5. Choose another XD and repeat from 1 for any XD on the continuation path. 
6. Finally, the transformed feed compositions XF that lead to output multiplicities lie in the 

union of all the areas A(XD), i.e., in the union of all areas enclosed by the boundary 
segments that belongs to some S(XD). 

 
3.4.3 Back-transformation of the ∞/∞ Predictions 
 
The non-hybrid ∞/∞ theoretical predictions are obtained in transformed compositions and 
flowrates, XP (PD) (where P stands for any product flow D or B). To obtain the predictions using 
molar compositions, XP has to be transformed back. This means, that the c-r-1 independent 
transformation equations (3.2) have to be solved simultaneously with the r chemical equilibrium 
equations. In general, the latter take the form (for each reaction): 
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where f is nonlinear. This equation is problematic because the boiling point temperature T is 
involved in an implicit and nonlinear manner. T is determined by a bubble-point calculation at a 
given pressure p which involves x and, is nonlinear and implicit in T:  
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Therefore, it is obvious that the back-transformation problem can only be solved numerically for 
each XP. If the equilibrium constant K is not temperature dependent and the relationship (3.14) 
does not involve the activity coefficients, then an analytical solution would be possible. 
For type III profiles it was shown that the products either lie on the edges of the triangle or on 
interior boundaries. Normally, the back-transformation of compositions lying on the edges of the 
transformed space is rather simple since some components are missing. Moreover, the interior 
boundaries are reactive residue curve boundaries which are obtained by integration of equation 
(3.4). In order to get Y(X), a bubble-point calculation has to be done and hence, the molar 
compositions x and y are known. By storing x together with the transformed compositions on the 
boundary the back-transformation can be simplified using a look-up table and interpolation 
methods. 
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Chapter 4 -  Hybrid ∞/∞ Analysis 
 
The ∞/∞ analysis from the Chapter 3 can be applied to columns with a reacting core (“hybrid” 
columns). They are built from a reactive column section, where the catalyst is present, and one or 
two non-reactive sections (rectifying and stripping sections). In some cases a higher performance 
can be obtained by the use of hybrid columns.  
 
4.1 Hybrid ∞/∞ Profiles 
 
4.1.1 Preliminaries 
 
First, note that the definitions introduced for non-hybrid columns (MSS, column configurations 
etc) carry over to hybrid columns. By feasible hybrid profiles steady-state column profiles of a 
hybrid equilibrium reactive distillation column are denoted. Again, such profiles can be assigned 
to a real distillation plant (measured profiles) or to a distillation column model (steady-state 
solutions). In this chapter, the “model” of interest for the analysis is the ∞/∞ limiting case of a 
hybrid column (to be described). 
In Chapter 3, feasibility conditions were developed for profiles in the ∞/∞ case of a non-hybrid 
equilibrium reactive column: The (packed) column profile must coincide with a reactive residue 
curve, it must contain at least one reactive pinch point and the lever rule in transformed units 
must be fulfilled (simplified formulation). At a first glance, the extension of these conditions to 
hybrid ∞/∞ columns might appear rather simple: The reactive residue curves have to be replaced 
by their non-reactive counterparts for the column sections where no reactions take place 
(rectifying and stripping sections). 
 

 
Figure 4.1 Three reactive distillation columns: (a) a non-hybrid column, (b) the hybrid 

“Nijhuis” column (Nijhuis et al., 1993), and (c) the hybrid “Clausthal” column (Sundmacher 
and Hoffmann, 1995). 

 
The necessity of a pinch point and of the lever rule to be fulfilled in transformed units remains. 
However, there are several problems which make the extension non-trivial: The lever rule in 
transformed units is necessary but not sufficient to guarantee feasibility of a hybrid column 
profile. Moreover, it is non-trivial to extend the concept of infinite length to a hybrid column, 
which consists of multiple sections of physically different nature (reactive and non-reactive). 
One can imagine that the whole column is of infinite length or, for example, that each of the 
reactive and non-reactive sections has infinite length. Therefore, a closer look at necessary and 
sufficient conditions for feasible hybrid profiles in the ∞/∞ case is needed. 
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4.1.2 ∞/∞ Assumptions for Hybrid Columns 
 
By definition, a hybrid reactive column consists of up to three column sections: a non-reactive 
rectifying section, a reactive section and a non-reactive stripping section. Sometimes, one of the 
non-reactive sections can be missing as shown in Figure 4.1, where a non-hybrid (a) and two 
hybrid column designs (b, c) are illustrated. As indicated above, the assumption of infinite 
column length (an infinite number of equilibrium stages) can be realized in different ways in the 
∞/∞ case of a hybrid column. Hereafter, two approaches (or ∞/∞ “models”) are studied: In one 
approach, each of the sections present (rectifying, reactive and stripping section) is assumed to 
have infinite length. This realization is the basis for the hybrid analysis referred to as the exact 
method. Feasibility conditions for such hybrid profiles will be developed later in this section. In 
the other approach, it is assumed that only the reactive section has infinite length, and that the 
other sections are of finite length. 
The following assumptions are made for the ∞/∞ analysis of hybrid reactive columns: 
 
Assumptions 1 (∞/∞ Assumptions for Hybrid Columns): 

1. Reactions take place in the liquid phase of the reactive section and reach chemical 
equilibrium instantaneously, i.e., simultaneous chemical and vapour-liquid equilibria are 
established; 

2. a. for the exact method, each of the rectifying, reactive and stripping sections of a hybrid 
column have infinite length (an infinite number of stages);  

2. b. for the approximate method, the reactive section has infinite length, but both rectifying 
and stripping sections are considerably smaller; 

3. the column operates at infinite internal flows (infinite reflux and boil-up); 
4. the column pressure is constant (negligible pressure drop); 
5. all column feeds enter the reactive section. 

 
The fourth assumption is not fundamental to the following analysis and could be relaxed, but at 
the cost of a more complex formulation of the procedure to construct the MSS feed region. Note 
that in the limiting case of infinite reflux, the number and location of the feeds within a section 
have no influence on the product compositions as long as the overall feed flowrate and 
composition remain the same (Laroche et al., 1992a). 
Anyway, feeding to the reactive section also makes sense intuitively. The task of the reactive 
section is to convert the reactants to the desired products and to remove the latter from the 
section. Conversely, the rectifying and stripping sections separate products and inerts from the 
reactants, which are recycled to the reactive section. An unreacted feed only contains reactants 
and inert components and should therefore be fed to the reactive section. Feeding to a non-
reactive section would cause additional traffic (and heat requirements), since the reactants have 
to be transported to the reactive section first.  
 
4.1.3 Infinite Internal Flows and Infinite Column Length 
 
At infinite internal flows (infinite reflux and boil-up), the profile of a packed non-hybrid reactive 
column coincides with a part of a reactive residue curve (Chapter 3). The profile of a packed 
non-reactive column coincides with some part of a non-reactive residue curve (Chapter 3). 
Similar conditions were found for tray columns including different types of condenser or reboiler 
equipment. The formulation used here rests upon residue curves since they are reasonable 
approximations to describe profiles of tray columns (Widagdo and Seider, 1996). Therefore, the 
rectifying and stripping profiles of a hybrid column operated at infinite internal flows have to 
coincide with some parts of non-reactive residue curves, and the reactive section profile in 
transformed units has to coincide with some part of a reactive residue curve. 
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If any column section has infinite length, there must be at least one pinch point in the column 
profile of that section (Petlyuk and Avet'yan, 1971). At infinite internal flows, the only candidate 
pinch points are the singular points of the corresponding (reactive or non-reactive) residue curve 
map. Therefore, in the case where each of the column sections has infinite length (assumption 
1.2a), the reactive section profile has to contain at least one reactive singular point and each of 
the rectifying and stripping profiles has to contain at least one non-reactive singular point. In the 
case of assumption 1.2b, only the reactive section must contain at least one reactive pinch, the 
other sections have finite length.  
 
4.1.4 Material Balances for Hybrid Columns 
 
So far, the extension of the feasibility conditions from non-hybrid to hybrid columns was rather 
straightforward. The crucial point is the global material balance and thus the lever rule for hybrid 
columns. Ung and Doherty (1995d) derived the equations describing the operating lines (material 
balances) of a non-hybrid column. They showed that the equations for the reactive sections are 
identical to those of non-reactive columns if all molar compositions and flowrates are replaced 
by their transformed analogues (for the transformation equations see Chapter 3). Moreover, the 
overall material balances maintain their form in transformed coordinates. Note that Ftot, xF

tot and 
XF

tot are the overall (total) feed flowrate, the overall molar and the overall transformed feed 
compositions, respectively. From Figure 4.2, the transformed material balances of the reactive 
section can be written as: 
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From material balances around the non-reactive rectifying section (including the condenser) and 
the stripping section (including the reboiler) one obtains: 
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Figure 4.2. Illustration of a hybrid reactive distillation column with two non-reactive and one 
reactive section (“Nijhuis” column). Note that the indexes do not correspond to tray numbers. 

 
Importantly, the transformed composition variables X are reaction-invariant compositions and 
take the same value for any reaction extent of a given liquid mixture (Ung and Doherty, 1995e). 
Hence, X takes the same value for an unreacted mixture and the same mixture in chemical 
equilibrium. Consequently, the non-reactive material balances of the rectifying and stripping 
sections in molar units are also fulfilled in transformed units: 
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By combining equations (4.1), (4.4) and (4.5), the flows at the section borders can be eliminated 
and the global material balance of a hybrid column in transformed units is obtained (after some 
rearrangement): 
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Therefore, the lever rule in transformed units does not only hold for non-hybrid, but also for 
hybrid columns. Any feasible hybrid column profile must fulfill equations (4.6) and thus must 
follow the transformed lever rule. 
The three conditions above, coincidence of profiles with residue curves, necessity of pinch 
points, and the transformed lever rule, are necessary but not sufficient for feasibility of a hybrid 
column profile under assumption 1.2a, although they are necessary and sufficient conditions for 
non-hybrid columns. The reason is that the transformed composition space has a lower 
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dimension (c - r) than the physical space (c). Thus, the transformed lever rule consists of c - r 
linear independent equations (c - r -1 for the compositions X and one overall balance). Such a 
description is adequate for the reactive column section or for a non-hybrid column, which is part 
of the reaction space and thus exhibits c - r degrees of freedom. However, the non-reactive 
sections exist in the physical space and have c degrees of freedom. Therefore, r equations are 
missing if non-reactive sections are described by the transformed lever rule only and thus, r 
equations from the non-reactive component balances, (4.2) or (4.3), have to be fulfilled in 
addition (for each non-reactive section). 
 
4.1.5 Feasible Hybrid ∞/∞ Profiles 
 
In conclusion, the necessary and sufficient conditions for feasible hybrid ∞/∞ profiles under 
assumption 1.2a are: 
 
Conditions 3 (Feasible ∞/∞ Hybrid Profiles): 
 

1. the rectifying and stripping profiles of an ∞/∞ hybrid column must coincide with parts of 
non-reactive residue curves, and the reactive section profile in transformed units must 
coincide with a part of a reactive residue curve; 

2. each column section contains at least one pinch point (appropriate reactive or non-
reactive singular points); 

3. the transformed lever rule (4.6) holds; 
4. r independent non-reactive material balances hold for each non-reactive section. 

 
Note that for scenarios of infinite column length different from assumptions 1.2a, condition 3.2 
may not be necessary. 
 

 
Figure 4.3. Illustration of the graphical interpretation of the feasibility condition 3.4 for a  

non-reactive hybrid stripping section (notation from Figure 4.2). 
 
4.1.6 Graphical Interpretation 
 
There is a severe problem with mixing rules for column sections in the ∞/∞ case: All internal 
flowrates Li and Vi at the section borders are infinite and thus, it is impossible to evaluate the 
lever rule graphically (Figure 4.2). The ∞/∞ analysis, however, rests upon geometrical methods 
and requires a lever rule for the graphical determination of all feasible profiles. Thus, there is the 
need for a graphical interpretation of condition 3.4 which is suitable for the ∞/∞ case. The 
following approach can be applied to either of the non-reactive sections and is demonstrated for 
the stripping section hereafter. 
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In Figure 4.3, the mass balance line of the stripping section is illustrated in the two- dimensional 
molar composition space (c = 3) where a single reaction takes place (r = 1). The composition and 
flowrate of the bottoms product B (a total of three degrees of freedom) are not unique by the 
transformed lever rule (c – r = 2 equations). Rearranging the non-reactive balance around the 
stripping section (4.3), a mixing rule can be obtained (Figure 4.3): 
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For the limiting case of infinite internal flows (the external flowrate B remains finite and 
constant): 
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Geometrically, x3 approaches y3 in Figure 4.3 until they coincide in the limit of infinite internal 
flows. Note that in the limiting case, the distance between B and y3 is not defined (by the lever 
rule) and therefore, the exact location of the bottoms product B (covering all three degrees of 
freedom) cannot be determined. However, it can be determined the direction of the line shown in 
Figure 4.3 and thus, one obtains a “locus” of all possible xB compositions. This locus can be 
understood as the graphical interpretation of the feasibility condition 3.4. 
As the next step, it is described how one calculates the properties of this locus of the bottoms 
product. Since the liquid L3 is leaving the reactive section, x3 is in chemical equilibrium and lies 
on the bold solid line x̂  in Figure 4.3. y3 is the vapour in equilibrium with the liquid composition 
on the top stage of the stripping section. Therefore, y3 is not in chemical equilibrium in a finite 
column. In the limiting case of an infinite number of equilibrium stages in each column section, 
however, there is a pinch point at the border of the reactive and stripping section (justified 
below). Therefore, the concentration difference at the border disappears and thus, the liquid 
composition on the top stage of the stripping section approaches chemical equilibrium. Hence, y3 
is in vapour-liquid equilibrium with a composition in chemical equilibrium, and is therefore 
located on the “reactive vapour line” ŷ  (dashed bold in Figure 4.3). In the limit of infinite 
internal flows (4.8), x3 and y3 must coincide. This can only happen at a singular point of both the 
molar composition space and the reaction space (X=Y in Figure 4.3). Therefore, this singular 
point will act as a simultaneous pinch point in both the stripping and the reactive section as 
stipulated. 
Next, since xB must lie on the straight mass-balance line through x3 and y3, the direction of this 
line needs to be calculated in the ∞/∞ case. This line is referred to as the “q-line”: it starts at X 
=Y and its slope is denoted by q (Figure 4.3). At the joint singular point, q can be easily 
computed from the data available for the calculation of the reactive residue curves (the molar 
compositions x̂  in chemical equilibrium and their corresponding vapour compositions ŷ ). 
Starting with x̂  on any reactive residue curve close to the singular point, the limiting value q is 
obtained as x̂  approaches the singular point. Therefore, the calculation of q requires 
thermodynamic information only, and the q-line is a property of the chemical and vapour-liquid 
equilibrium of a mixture. In general, the graphical element resulting from this procedure is not 
necessarily a line, but a plane in higher dimensions (etc). Nevertheless, the term “q-line” is kept 
here for simplicity. Note that even though the procedure is exact in the ∞/∞ limiting case, its 
graphical representation is approximate by the calculation procedure. Therefore, condition 3.4 
should be used to determine feasibility of a hybrid profile exactly. Not surprisingly, the 
procedure requires the non-reactive composition space to be used for the graphical determination 
of any hybrid ∞/∞ profile. 
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4.2 Hybrid ∞/∞ Methods 
 
4.2.1 The Exact Method 
 
The non-reactive prediction tools of Bekiaris et al. (1993) were extended to non-hybrid reactive 
distillation columns (non-hybrid ∞/∞ analysis). Importantly, it was shown that the only 
prerequisite for extending the ∞/∞ analysis to a new class of distillation systems is the 
availability of necessary and sufficient feasibility conditions for column profiles in the ∞/∞ case. 
This prerequisite can be fulfilled for hybrid columns under assumption 1.2a (where each column 
section has infinite length), since the feasibility conditions 3 are necessary and sufficient in this 
case. Therefore, under assumption 1.2a all the procedures described in the current section are 
applicable to ∞/∞ hybrid columns. 
The basic idea for the formulation of the hybrid ∞/∞ prediction method is to make use of the 
analogy to the non-hybrid method by replacing the feasibility conditions for non-hybrid columns 
with the hybrid equivalents, resulting in a graphical method to determine all possible hybrid 
column profiles for a given feed. This analogy is possible since a hybrid column of given design 
with given feed composition, flowrate and quality, has only one operational degree of freedom in 
the ∞/∞ case, just like a non-hybrid column (Appendix B). Thus, the single degree of freedom 
can be used to parameterize all possible profiles and to perform a continuation of solutions. 
Since the lever rule holds in transformed units only, the transformed distillate flowrate DD is 
selected as the continuation parameter (BD is given by equation 4.6). As a result, the 
formulations of the hybrid prediction methods are very similar to those for non-hybrid columns 
in Chapter 3. Instead of describing these hybrid formulations in great detail hereafter, the focus 
will be on the main results, and on the discussion of the differences to the non-hybrid 
counterparts from Chapter 3. 
Hybrid ∞/∞ Bifurcation Analysis: The hybrid bifurcation analysis proceeds analogously to the 
non-hybrid one. First, the feasible profile in the limiting case of an ∞/∞ hybrid column with zero 
distillate flow, DD=0, is determined (initial profile). Second, the feasible profile with zero 
bottoms flow, BD=0 and DD=FD, must be found (final profile). The properties of the initial and 
final hybrid profiles are quite different from those of the non-hybrid profiles and are discussed in 
Appendix 4.5. Third, a bifurcation study (continuation of solutions) is performed by tracking the 
distillate and bottoms compositions in the transformed composition space, starting from the 
profile with DD=0 and ending at the profile with DD=FD. With this procedure, all feasible 
transformed composition profiles are obtained for the ∞/∞ case of a hybrid reactive column 
under assumption 1.2a. 
The definitions of the continuation path as well as of the distillate and bottoms product paths 
carry over from the non-hybrid analysis. Since the graphical interpretation of the feasibility 
conditions 3 requires to work in the physical composition space, the product paths are generally 
obtained in molar compositions. However, they are parameterized by the transformed distillate 
flowrate, DD, since the lever rule holds in the transformed space only. By plotting the 
parameterized paths, xD(DD) and xB(DD), versus the flowrate DD, a series of bifurcation diagrams 
can be constructed, and the limit points as well as the interval of the product flowrate where 
MSS exist can be determined. These product paths are denoted by xP(PD) hereafter, where P 
stands for any product D or B. If the transformed distillate flowrate is varying non-monotonically 
along the continuation path, multiple steady states of type II exist in the ∞/∞ case of a hybrid 
column (under assumption 1.2a) and for the feed composition studied. Note that only 
transformed flowrates allow to identify type II multiplicities, since the lever rule does only hold 
in transformed units. Multiplicities in other flowrate units are detect by the reactive singularity 
analysis to follow. 
Geometrical Multiplicity Condition: The geometrical, necessary and sufficient multiplicity 
condition is used to detect a decrease in the distillate flowrate on the continuation path as defined 
above, i.e., the existence of MSS. It takes exactly the same form as for non-hybrid columns if the 
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non-hybrid product paths are replaced by their hybrid equivalents. Since the lever rule only holds 
in the transformed composition space, the hybrid product paths xP(PD) have to be transformed to 
obtain XP(PD) in advance to applying the condition.  
Hybrid MSS Feed Region: All possible feed locations leading to MSS in the ∞/∞ case of a 
hybrid column under assumption 1.2a can be predicted by the MSS feed region condition. The 
procedure developed for non-hybrid systems can be applied directly to hybrid columns by 
replacing the product paths as was done for the geometrical condition above. Since all feeds 
enter the reactive section of the hybrid column, MSS existing for a transformed feed composition 
XF will also exist for all molar feed compositions xF resulting in the same composition in 
chemical equilibrium. Therefore, the methods relating the transformed and physical MSS feed 
region from Chapter 3 carry over, and the physical hybrid MSS feed region can easily be 
constructed. 
Reactive Singularity Analysis: The ∞/∞ singularity analysis was refined for application to 
reactive columns in Section 3.3.4. Note that the product paths from the hybrid bifurcation 
analysis are obtained in the physical composition space, parameterized by a transformed 
flowrate, xP(PD). Therefore, no back-transformation is needed to determine xP(PN), but 
singularities in the relationship between transformed and molar flowrates are still possible. 
Importantly, the reactive singularity analysis applies to hybrid columns without any 
modiffication of the formulation. Consequently, the hybrid prediction method can be extended to 
specifications involving molar, mass or volumetric product flowrates and covers the type Ia 
multiplicities studied by Jacobsen and Skogestad (1991). Qualitative and quantitative changes in 
the multiplicity behavior can be detected. 
 
4.2.2 The Approximate Method 
 
Recall the suggestion made earlier, that assumption 1.2a is one, but not the only possible 
“model” of an hybrid column with infinite length. However, it is the only model for which are 
derived successfully the necessary and sufficient feasibility conditions for hybrid ∞/∞ profiles 
(conditions 3). These conditions are the basis of the exact method described above, which is 
exact in the ∞/∞ case of hybrid columns under assumption 1.2a, i.e., where each of the hybrid 
column sections has infinite length (or an infinite number of equilibrium stages). The major 
drawback of the exact method is inherent in feasibility condition 3.2, which requires at least one 
pinch point in each column section. Since pinch points may be “shared” (at the section borders), 
at least two pinch points are necessary for a feasible profile under assumption 1.2a. These 
feasibility conditions are quite restrictive and thus, feasible hybrid ∞/∞ profiles may not exist in 
some cases, resulting in the non-applicability of the exact method. For an ∞/∞ “model” different 
from assumption 1.2a, i.e., dropping the assumption that each column section independently 
must have infinite length, condition 3.2 is no longer necessary and a feasible profile may exist. 
Even though a “precise” analysis is not possible because necessary and sufficient conditions are 
not available in this case, the aim of this section is to provide a method to approximate the 
product locations of such an hybrid column. 
The approximate procedure is described here for hybrid columns, where only the reactive section 
is of infinite length, and the non-reactive sections are finite (assumption 1.2b). Moreover, it is 
assumed that the non-reactive sections are relatively small and consist of a few equilibrium 
stages only. The approximate method rests upon the information obtained from the non-hybrid 
∞/∞ bifurcation analysis (Section 3.3.1), i.e., the non-hybrid product paths in the transformed 
compositions space, XP(PD). Each of these product paths is the locus of all possible product 
locations in a column with a single, reactive section of infinite length. The basic idea of the 
procedure described hereafter is to “convert” these non-hybrid product paths into an estimate of 
the product paths for a hybrid column with small non-reactive sections (assumption 1.2b). 
Beforehand, two well-known computational tools are introduced. By a boiling-point iteration we 
refer to the solution of the recursive expression (counting trays from the top): 
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Given the liquid composition ( )nnx on tray n, the liquid composition ( )nnx 1− , which is equal to the 

vapour composition in equilibrium with ( )nnx , is calculated. ( )nnx 1−  denotes the liquid 
composition on tray n-1, calculated from the known composition of tray n. 
 
Likewise, a dew-point iteration is defined as: 
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Here, the liquid composition on tray m+1, ( )mmx 1+ , which is based on the information from tray 

m, is the composition of the liquid in VLE with its vapour of composition ( )mmx . 
Algorithms for boiling- and dew-point computations can be taken from Smith et al. (1996). First, 
the distillate product path from the non-hybrid ∞/∞ analysis, XD(PD) is back-transformed to 
obtain the corresponding physical compositions in chemical equilibrium, xD(PD) (for the back-
transformation see Section 3.4.3). This locus of compositions is assumed to approximate all 
possible liquid compositions at the top of the infinitely-long reactive section, ( ) ( )DD

nn Pxx = . 
The parameterization with the product flowrate PD is removed. It is important to note that this is 
a very crude approximation, since any liquid composition leading to the same composition in 
chemical equilibrium should be considered at the entrance of the reactive section (compare with 
Figure 4.2). Similarly, the non-hybrid bottoms path after back-transformation is taken as the 
locus of all possible compositions of the liquid leaving the reactive section at its lower end, 

( ) ( )DB
mm Pxx =  (again removing the parameterization with PD). This is accurate since the liquid 

leaving the section is in chemical equilibrium (from Figure 4.2). 
In addition to the reactive section of infinite length, the column consists of Nrect non-reactive 
rectifying trays (excluding a total condenser) and Nstrp non-reactive stripping trays (including a 
partial reboiler), which are assumed to be equilibrium stages. Now, the approximate procedure 
can be formulated: 

1. Approximate the loci of all possible compositions at the upper and lower end of the 
reactive section, ( )nnx  and ( )mmx , as described above. 

2. Map the locus ( )nnx  repeatedly Nrect times using recursion equation (4.9) to obtain 

( )nNn rect
x − . In the following it is assumed, that the converted composition path ( )nNn rect

x − is 
an estimate for all possible liquid compositions on the Nrect non-reactive tray on top of the 
reactive section, i.e., an estimate of the all possible distillate locations of the hybrid 
column. 

3. Map the locus ( )mmx  repeatedly Nstrp times using recursion equation (4.10) to obtain 

( )mNm strp
x + . Similar to point 2, the converted composition path ( )mNm strp

x +   is assumed to 

estimate all possible liquid compositions on the Nstrp non-reactive tray below the reactive 
section, i.e., it estimates all possible bottoms product locations of the hybrid column. 

4. Transform the estimates of the hybrid product locations obtained in 2 and 3 to obtain 
( )nNn rect

X −  and ( )mNm strp
X + . Apply the transformed lever rule (4.6) to all points on these 
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paths (using the given transformed feed location) to recover an estimate of the 
transformed product flowrates, D

nD  or D
mB . 

 
Consequently, the product path obtained from this procedure can be depicted in the transformed 
composition space in the same way as the non-hybrid product paths. Moreover, bifurcation 
diagrams can be generated by plotting some ( )nNn rect

X − or ( )mNm strp
X +  versus the flowrate D

nD . 

There is no theoretical reason why the geometrical condition, the procedure to construct the MSS 
feed region, and the reactive singularity analysis from the non-hybrid analysis cannot be applied 
to these product paths. Some practical drawbacks, however, are discussed later. 
Note that the approximate method is mainly justified by the results and is considered tentative 
here. There is no mathematical evidence on its preciseness, reliability or robustness except for 
the examples described later on. Thus, there may be better procedures to determine hybrid 
product paths for columns under assumption 1.2b. However, there is some physical 
argumentation supporting the procedure. The basic and somewhat hidden feature is that one 
removes the parameterization by a product flowrate (prior to step 1) before “mapping” the 
product paths (steps 2 and 3). Therefore, the distillate-bottoms pairing of compositions is 
disintegrated during the recursive steps in the procedure, and not re-established until the last 
step. This is essential since the procedure does not guarantee feasibility of the physical material 
balances (4.2) and (4.3). 
 
4.2.3 Discussion of the Reactive Methods 
 
In this section, the available methods for the prediction of MSS in reactive distillation are 
compared and their implications for finite columns are shown. First, the ∞/∞ prediction methods 
are compared to a “classical simulation approach”. The necessary data to perform a reactive ∞/∞ 
analysis were described in Chapter 3: The non-hybrid ∞/∞ analysis requires mostly 
thermodynamic information and depends only little on the specific column design. If residue 
curves are not only used to describe packed columns, but also tray columns (an approximation 
discussed earlier), and if special cases of condenser or reboiler equipment are neglected, the 
predictions do not depend on the column design at all. Since the requirements for the exact and 
approximate methods are identical to those mentioned here, there is no detailed column model 
needed in the (reactive) ∞/∞ case, unlike in a simulation approach, where column modeling is 
work intensive and introduces additional parametric sensitivities. 
Even though the exact method needs exactly the same moderate amount of data as the non-
hybrid analysis, the data are now represented in the physical composition space instead of the 
transformed one, i.e., in a space with dimension c -1 instead of c - r -1. Therefore, the graphical 
procedures can only be applied to systems with up to four components without exceeding 
common human imagination capabilities. An implementation of the procedures in a computer 
could potentially overcome this limitation. Because of the use of the physical composition space, 
back-transformation of the results is superfluous. The implications of the ∞/∞ prediction results 
from the exact method to columns with sections of finite length are analogous to those studied in 
the non-hybrid analysis, since both approaches essentially take the same form (geometrical 
condition, MSS feed region construction. . . ). 
However, the necessity of at least one pinch point in each column section is a fundamental 
drawback of the exact method and restricts its applicability to systems which are feasible in such 
a “multiple infinite” column. The approximate method provides a “heuristic” solution to this 
problem, since it only requires at least one pinch point in the reactive section, and thus is 
applicable to all systems where non-hybrid prediction results are available. However, the 
approximate method suffers from other limitations. First, the whole procedure starts with a crude 
approximation of the product compositions at the ends of the reactive section. Even worse, it is 
possible that the errors accumulate because of the iterative procedure. Second, the method turns 
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out to be highly sensitive to product paths on curved boundaries. Third, it takes some effort to 
perform the required boiling-point and dew-point calculations. On the other hand, back-
transformation does not play a time-critical role since it must only be performed at the initiation 
step. Finally, the implications of the prediction results from the approximate method to a column 
with finite sections are similar to those made for non-hybrid columns, since the approximate 
method rests on the predictions for a reactive section of infinite length. 
In conclusion, the exact method is very convenient for systems with up to four components. 
Unfortunately, it may not be applicable to all systems of interest. The approximate method may 
be limited from its approximate nature and from the effort required. If the ∞/∞ product paths of 
the non-hybrid analysis are available in physical compositions (after back-transformation), it is 
recommended to determine the influence of a few additional non-reactive stages by the 
approximate method. Note that from experience, the approximate method is often more effective 
in providing estimates of the transformed hybrid product paths than reliably predict the existence 
of MSS. For those cases where the exact and the approximate methods cannot be applied for 
some reason, bifurcation simulations of a specific column design and feed location may be 
necessary to obtain sound evidence on the existence of MSS for hybrid columns. 
 
4.2.4 Possible Physical Causes 
 
In this section, the focus will be on the types of multiplicities which can occur in hybrid reactive 
systems. 
Type Ia MSS are caused by singularities in the nonlinear relationship between different units of 
measure for the internal and external flowrates, e.g. between transformed and molar, molar and 
mass, or volumetric and mass flowrates. This type of MSS was first discovered for ideal binary 
mixtures and finite columns (Jacobsen and Skogestad, 1991), but was also shown to be frequent 
in multicomponent azeotropic as well as non-hybrid reactive columns. It can be predicted using 
the ∞/∞ singularity analysis for non-reactive and reactive multicomponent systems. 
Type Ib MSS (multiplicities due to internal heat effects) cannot be predicted by means of any 
∞/∞ analytical tool. Clearly they should also exist in equilibrium reactive columns as they do for 
non-reactive columns. 
Type II multiplicities are inherently caused by the underlying thermodynamic equilibrium. In 
non-reactive columns, they are caused by the VLE of the mixture and can be predicted by the 
non-reactive ∞/∞ analysis (Bekiaris et al., 1993; 1996). In reactive columns, this type of MSS 
can occur due to the properties of the simultaneous chemical and vapour-liquid equilibrium. This 
type of multiplicities exists in non-hybrid reactive columns and can be predicted by the non-
hybrid ∞/∞ analysis (Chapter 3). Both phenomena leading to type II MSS, i.e., the VLE or the 
combined vapour-liquid and reactive equilibrium, occur in the entire distillation apparatus (non-
reactive or non-hybrid column). This type of MSS is denoted by IIa. Moreover, it is foreseeable 
that this type of MSS will also occur in hybrid columns, e.g. if the reactive section is very large 
and the non-reactive sections very short. 
Consequently, MSS of type IIa in a hybrid column must also exist in a non-hybrid column. The 
opposite, however, is not necessarily true. It is possible that MSS exist in a hybrid column, but 
not in the corresponding non-hybrid column and also not in the non-reactive system. Therefore, 
these multiplicities cannot be caused by either one of the physical phenomena leading to type IIa 
and represent a new type, denoted by IIb. The type IIb MSS are caused by the interactions of 
non-reactive and reactive equilibrium. Table 4.1 lists all discussed types of physical causes for 
the classes of distillation systems where MSS can exist. 
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Table 4.1. Overview on the existence of multiplicities of different types (caused by different 
physical phenomena), depending on the general class of a distillation system. The entries in 

brackets are conjectured only. 
Reactive Distillation Type 

of 
MSS 

Ideal 
Distillation 

Azeotropic 
Distillation Non-hybrid Hybrid 

I        a Yes Yes Yes Yes 
b Yes Yes (Yes) (Yes) 

II      a No Yes Yes Yes 
b No No No Yes 

 
 

Table 4.2. Pure component Antoine parameters of the example mixture 
Pure Component Antoine Parameters 

Name                                     Index  A[-] B[K] C[K] 
Light (n-hexane)                       L 20.7121 -2691.08 -48.940 
Intermediate (n-heptane)           I 20.7664 -2911.32 -56.514 
Heavy (n-octane)                      H 20.8022 -3108.08 -63.765 

 
 
4.3. A Fictitious Example System 
 
4.3.1 Thermodynamic Description 
 
The goals of this section are: to provide a comprehensible example of the application of the exact 
method to a hybrid system, and to demonstrate the existence of multiplicities of type IIb. Since 
this example is used for illustrative purposes it is “fictitious” in the sense, that not a real physical 
system is used but a system is constructed from real data. For simplicity, a system with c=3 
components is chosen, which will be denoted as the light (L), intermediate (I) and heavy boiling 
(H) components. The mixture data are selected to obtain a system with ideal VLE as well as 
“ideal” stoichiometry and chemical reaction equilibrium. 
The vapour-liquid-equilibrium description of the ideal mixture of n-hexane, n-heptane and n-
octane is used for the example system (all activity and fugacity coefficients are equal to unity). 
The Antoine parameters for calculating the pure component vapour pressures were taken from 
the Aspen database and can be found in Table 4.2 (Aspen Plus, 1995). 
Since the VLE is ideal, non-reactive azeotropes cannot exist. The calculated non-reactive residue 
curve diagram is depicted in Figure 4.4. All residue curves originate from the low- boiling 
(unstable) node L and end at the high-boiling (stable) node H. The intermediate component I 
forms a saddle singular point. 
As a next step in the construction of the reactive system the reaction stoichiometry L + I = H is 
chosen. The two lighter boiling components add to form the heavy boiling one which makes 
sense, as heavy-boiling organic components often tend to be “larger” than lighter boiling ones. 
Therefore, the feed will be a mixture of L and I and the heavy component is to be produced and 
to be isolated in a hybrid reactive column. The reaction is assumed to reach chemical equilibrium 
instantaneously and for simplicity, the reaction equilibrium is chosen to be temperature 
independent ( x̂  denotes the molar compositions in chemical equilibrium): 
 

1.0

ˆˆ
ˆ

e
xx

x
K

IL

H ==           (4.11) 

 



 60

 
Figure 4.4. Non-reactive residue curve diagram of the example system (physical composition 

space) including the line of chemical equilibrium compositions (reactive residue curve) and the 
corresponding vapour-line. Note that the q-lines are not tangent to the reactive equilibrium but 

tangent to xy ˆˆ − at the reactive singular points. 
 
Figure 4.4 shows the resulting chemical equilibrium line which represents the single reactive 
residue curve of the system, originating from pure L and ending at pure I. Note that the 
maximum achievable molar fraction of H in chemical equilibrium is 0.184, which is far from the 
goal of a pure component. The line of compositions ŷ  in vapour-liquid equilibrium with the 
reactive residue curve compositions x̂  is denoted as the “reactive vapour-line”. Finally, the q-
line is calculated at each of the reactive singular points and the resulting lines are drawn into 
Figure 4.4. 
In conclusion, there is nothing unusual in the construction of this admittedly fictitious example: 
the VLE description is taken from real mixture and the reaction is chosen as straightforward and 
self-evident as possible. Therefore, one could consider the whole reactive system to be “pseudo-
ideal” (ideal VLE and “ideal” reactions). Espinosa et al. (1996) use a similar system in their 
work (Figure 6 in their paper). 
 
4.3.2 Hybrid ∞/∞ Bifurcation Analysis 
 
As a first step in the study of the example system a bifurcation analysis of a hybrid ∞/∞ column 
by the exact method is performed. The binary feed for the analysis contains 60% L and 40% I 
prior to reaction, and the molar and transformed feed flowrates are FD=FN=100, respectively. 

 
Figure 4.5. Predicted ∞/∞ product paths of the example system (physical composition space) for 

a feed rich in L as well as the necessary thermodynamic information. 
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Since the feed enters the reactive section it immediately reaches chemical equilibrium (from 
assumption 1.1). The feed location is shown in Figure 4.5, together with the main 
thermodynamic properties of the system. The locus of all molar feed compositions resulting in 
the same composition in chemical equilibrium is denoted by the “feed stoichiometry line”, and 
can be best determined from the transformation equations of this system, choosing the heavy 
component as the reference (Ung and Doherty, 1995e): 
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Using the fact that Xa takes the same value in chemical equilibrium for all feeds on the line, it 
can be calculated for the given feed, and an expression for the compositions xL and xI describing 
the feed stoichiometry line is obtained (Figure 4.5): 
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The initial profile is obtained for the limiting case of zero distillate flow, DD=0 and BD=FD. 
According to the rules described in Appendix 4.5, the distillate is located at the unstable node L 
and the bottoms at the intersection of the feed stoichiometry line ith the q-line as shown in Figure 
4.6a. 
 

 
Figure 4.6. Prediction of the ∞/∞ product paths for the example system in the physical 

composition space for a feed rich in L. The step-wise analysis shows the product locations and 
the compositions at the section borders. 

 
The stripping section profile coincides with the segment of the non-reactive residue curve 
through B (between L and B) and contains L as the non-reactive pinch point. Both rectifying and 
reactive profiles are collapsed at L, which serves as a reactive and non-reactive pinch point. 

(a) If the distillate flowrate DD is increased, the bottoms moves on the q-line (straight line 
through L and the initial bottoms composition), a behaviour completely analogous to 
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∞/∞ non-reactive or to non-hybrid columns. The distillate remains at L as the collapsed 
section profiles do. The stripping profile still starts at L and coincides with the residue 
curve through B. 

 
Figure 4.7. ∞/∞ Prediction of the composition of the heavy component H in the bottoms product 
B compared with the results of the bifurcation computation (example system). The value of the 

distillate flowrate DN is identical to DD and the labels correspond to Figure 4.6. 
 

(b) As B reaches the I-H edge, the stripping profile contains I as an additional singular 
point. One can think of three different moves which could happen in the ∞/∞ case: 
First, the border between stripping and reactive section could detach from pure L and 
move towards I (along the reactive residue curve since it is in chemical equilibrium). 
Although there would be a feasible reactive profile for any point on the reactive 
equilibrium line (from L to this point), no non-reactive residue curve is connecting such 
a point to the bottoms B and thus, there is no feasible stripping profile (compare Figure 
4.4). Second, B could move towards pure I. This would also result in an infeasible 
profile and is best illustrated using Figure 4.3 and a finite, but large column. A move of 
B towards I would steepen the mass balance line shown in the Figure. Since both x3 and 
y3 are infinitely close to pure L, this would cause y3 to leave the composition diagram 
and no feasible stripping profile could be obtained. Third and last, B could move 
towards pure H in Figure 4.6b. The distillate still stays at pure L as the collapsed 
rectifying and reactive section profiles do. The stripping profile now runs from L over I 
to B and thus, such operating points are feasible. By application of the transformed 
lever rule, the distillate flowrate DD is decreasing along this segment of the 
continuation path and hence, MSS will exist (Figure 4.7). 

(c) As soon as B has reached the heavy component corner, the border between the 
stripping and reactive profile can leave pure L and move along the reactive residue 
curve until it reaches I (Figure 4.6c). Since a non-reactive residue curve connects the 
bottoms at H with any point of the reactive curve, this movement is feasible. L is the 
pinch point for the rectifying and reactive profiles and H for the stripping profile. At the 
end of the move, the collapsed rectifying profile stays at L and the reactive profile runs 
from L along the reactive residue curve to I. Since the product locations do not change 
during this transition, the distillate flowrate DD is not changing either (from the lever 
rule). Hence, an infinite number of profiles result for the same value of DD, the same 
inputs and the same outputs (internal state multiplicities). The limit point (c) in Figure 
4.7 is the optimal design point: all of the intermediate component contained in the feed 
is converted to H, which is obtained as a pure bottoms product. The distillate contains 
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only the excess of the L component. Since both products are pure, conversion and yield 
are at their maximum values (100%). 

(d) As the distillate DD is further increased, other components must show up in the bottoms 
product and thus, B is moving back towards I (other possibilities are not feasible, 
Figure 4.6d). The distillate stays at L as the rectifying-reactive border does and all 
section profiles are feasible. On this move, conversion decreases until zero conversion 
is obtained as B reaches I. 

(e) Similarly as for move (c), the border between the rectifying and reactive profiles 
detaches from pure L and moves along the reactive residue curve towards I (Figure 
4.6e). There is always a feasible profile from the distillate at pure L to any point on the 
reactive residue curve (following a non-reactive residue curve). The reactive profile 
runs along a segment of the reactive residue curve, the stripping profile is collapsed at 
I, and all profiles contain a pinch point (L or I). Again, the product flowrates do not 
change and internal state multiplicities are observed. 

(f) Finally, the rectifying profile connects the singular points L and I and thus, the distillate 
can now leave the L component corner and moves towards the feed, still containing I as 
a pinch point (Figure 4.6). There is zero conversion and basically, the column performs 
as a non-reactive one. The reactive and the stripping profile are collapsed at pure I. The 
distillate flowrate DD increases and becomes equal to the feed flowrate FD when D has 
reached the feed location. Since BD = FD-DD = 0, the bottoms immediately jumps to the 
heavy component, establishing a stripping profile between I and H (see Appendix 4.5, 
only possible in the limiting case).  

 
Now, the final profile is obtained and all possible product locations have been found. The hybrid 
product paths xD(DD) and xB(DD) are shown in Figure 4.5 and a bifurcation diagram for the 
heavy component in the bottoms product is shown in Figure 4.7. Since xD

H =0 on the whole 
continuation path, the molar and transformed distillate flowrates are equal. At points (c) and (e) 
an infinite number of different profiles exist for the same flowrate specification and product 
compositions (internal state multiplicities). To verify the predictions, a bifurcation computation 
was performed for the example system and the same feed. The Auto model with constant molar 
overflow (Güttinger and Morari, 1998a) is used for a column with 20 ideal equilibrium trays in 
each of the rectifying, reactive and stripping sections. The feed enters in the middle of the 
column (tray 30), a total condenser and a partial reboiler were used. The reflux flowrate was 
fixed at LN=1500 (L=F=15) and a bifurcation study was performed. The computed product paths 
are compared with the predicted hybrid paths in Figure 4.7. The qualitative agreement is 
excellent, especially in the region where output multiplicities exist. Comparisons for the other 
components and for the distillate product show very similar results. 
Note that the internal state multiplicities observed in the ∞/∞ analysis (at (c) and (e)) can be 
compared to the case Bekiaris et al. (1996) described as degenerate multiplicities, where the 
continuation of solution scans through an infinite number of profiles. To date, the question 
whether these state multiplicities are an artifact of the ∞/∞ case has not been studied. However, 
in the bifurcation calculations of the finite column, the steady states in the state multiplicity 
region do differ by about 10−5 (mole fraction). Therefore, extremely tight tolerances have to be 
used to distinguish between these steady states. Note that this large number of solutions with 
almost identical inputs and outputs may not be of practical relevance. 
The next step is the application of the singularity analysis from Section 3.3.3 to recover the 
product paths in molar flowrates, xD(DN) and xB(DN). Since back-transformation is not 
necessary, this is a fast and simple mathematical operation and the result is depicted in Figure 
4.8. Output multiplicities exist for molar or transformed distillate flowrates between 20 and 40, 
i.e., on 20% of the total flowrate range. A corresponding result is obtained for the transformed 
bottoms flowrate BD (from the overall mass balance, 4.6). 
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Depicting the product path parameterized by BN, simultaneous output and internal state 
multiplicities occur for BN=40. Note that a design close to the limit point (c) is the only way of 
obtaining pure H in a product at reasonable conversion (Figure 4.7). Although pure heavy 
product could be withdrawn in a finite column at high D flowrates, conversion is extremely low 
(and so is the bottoms flowrate). The singularity analysis was not performed any further since the 
determination of flowrates on mass or volumetric bases would require molar weights and liquid 
densities, which are not available for the example system studied. 
 
4.3.3 Hybrid MSS Feed Region 
 
The hybrid MSS feed region cannot be determined easily using the geometrical condition 
described for the exact method since the example system has only c - r -1= 1 dimension in the 
transformed composition space. But, it is not difficult to determine the region directly from the 
results of the ∞/∞ bifurcation analysis. For the non-reactive feed F1 in Figure 4.9, the first 
steady-state bottoms product is located at point A (compare with Figure 4.5), which is the 
intersection point of the q-line with the corresponding feed stoichiometry line. 
 

 
Figure 4.8. ∞/∞ Predictions of the composition of the heavy component H in the bottoms product 

for the example system and different units of the product flowrates (continuation parameter). 
 
Since the distillate is located at L, the DD flowrate is increasing for all bottoms locations between 
A and C (branch denoted by (a) in Figure 4.7), before it starts decreasing on branch (b). 
Similarly, the first bottoms product for a feed F2 would be at point B and DD is increasing for all 
bottoms compositions between B and C. Therefore, MSS will occur as long as there exists a 
steady-state solution branch (a) in Figure 4.7 and vice versa: If there is no branch (a), then the 
branches (b) and (c) will also disappear and the first solution obtained will be at point (d). Hence, 
no multiplicities would exist. 
The critical question is for which non-reactive feed location on the L-I edge branch (a) would 
consist of a single point, i.e., the limit point? 
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Figure 4.9. Prediction of the MSS feed region for an ∞/∞ hybrid column and the example system. 

Three non-reactive feed locations used in the study. 
 
From Figure 4.9 it is obvious that the last bottoms location on (a) is at point C where the q-line 
intersects the stoichiometry line belonging to the critical feed. Therefore, the feed location F3 is 
the feed richest in component I for which MSS still exist and all feed locations between L and F3 
on the L-I edge will lead to multiplicities. Since the feed enters the reactive section, all feeds 
located on the stoichiometric lines corresponding to the feed locations between L and F3 result in 
the same composition in chemical equilibrium (where the stoichiometry line intersects the 
reactive equilibrium line) and will also lead to MSS. 
Finally, the hybrid MSS feed region is the union of all stoichiometric lines originating from 
points between L and F3 and is shaded in Figure 4.9. The MSS feed region is verified by 
simulation for different binary feed compositions on the L-I edge. Note that pure component H at 
maximum conversion (limit point (c) in Figure 4.7) can only be obtained for a feed in excess of 
the light component (between F2 and L in Figure 4.9). Therefore, the existence of MSS and the 
possibility of obtaining a pure reaction product are fundamentally related for this system. 
 
4.3.4 Discussion of the Physical Cause 
 
In the previous sections the application of the exact method to a hybrid reactive distillation 
system was demonstrated. The multiplicities predicted have been verified by bifurcation 
simulations of a finite column at finite reflux. Since the non-reactive ternary system studied is 
ideal (VLE), MSS are not possible in any non-reactive column with molar specification of the 
flowrates (Bekiaris et al., 1993). Moreover, a non-hybrid ∞/∞ analysis in the transformed 
composition space, which only consists of the single reactive residue curve shown in Figure 4.4, 
reveals that no multiplicities can exist in non-hybrid columns, either. 
This result is straightforward from the fact that the non-hybrid reactive system is a binary ideal 
system in the transformed domain. In conclusion, no multiplicities exist for this system in a non-
reactive or reactive non-hybrid column, i.e., MSS cannot be caused by a phenomenon leading to 
MSS of type IIa. MSS only exist in hybrid reactive columns and are therefore caused by the 
interaction of the non-reactive and the reactive VLE. Thus, the existence of MSS of type IIb is 
demonstrated. 
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Chapter 5 – Previous studies regarding TAME synthesis system   
 
TAME (tert-amyl-methyl-ether) has been proposed as an alternative octane-enhancing 
component to MTBE because of its lower vapour pressure (which is a desirable property for fuel 
blends), and for the potentially lower manufacturing costs (Piccoli and Lovisi, 1995). Two works 
identified in literature about the TAME synthesis have been considered. One of them is done by 
Güttinger (PhD thesis, 1998) and assumes chemical equilibrium together with the presence of an 
inert component. The second study belongs to Thiel et al. (1997) and doesn´t take into 
consideration the presence of the inert, the system is not in chemical equilibrium. Both studies 
are presented next in this chapter. 
TAME is produced by liquid-phase synthesis from methanol (MeOH) and isoamylene (IA) 
catalysed by a sulfonic acid ion exchange resin. Among the three isoamylenes only 2-methyl-l-
butene (2M1B) and 2-methyl-2-butene (2M2B) are reactive in etherification; 3-methyl- 1-butene 
(3M1B) is non-reactive. Besides the synthesis of TAME, simultaneously the isomerisation of the 
reactive isoamylenes takes place. Therefore, the reactive mixture taking part in the TAME 
synthesis consists of four components: MeOH, 2M1B, 2M2B and TAME. The reaction scheme 
can be described as follows (Oost et al., 1995; Oost and Hoffmann, 1995a, b): 
 

CH3OH + CH3CH2C(CH3)==CH2 ⎯⎯ →←
++H

CH3CH2C(CH3)2OCH3    0H0
298R <∆         (5.1 a) 

 
MeOH + 2MB1   TAME 
 

CH3OH + CH3CH==C(CH3)2 ⎯⎯ →←
++H

CH3CH2C(CH3)2OCH3    0H0
298R <∆               (5.1 b) 

 
MeOH + 2MB2   TAME 
 

CH3CH2C(CH3)==CH2 ⎯⎯ →←
++H

 CH3CH==C(CH3)2 0H0
298R <∆             (5.1 c) 

 
2MB1   2MB2 
 
 
Even though MSS have been reported for some other reactive distillation systems, the 
application of the non-hybrid and hybrid predictions methods focuses on the industrially 
important production of fuel ethers. The prediction methods from Chapters 3 and 4 are applied to 
different designs of non-hybrid and hybrid columns, and the physical causes leading to MSS in 
this process are studied in detail. The existence of MSS is analyzed for the production processes 
of TAME (tert-amyl-methyl-ether) in a non-hybrid distillation column. 
 
5.1 Analysis of the TAME Process (Güttinger (PhD thesis, 1998)) 
 
5.1.1. Thermodynamics and Process Description 
 
Lieball (1998) studied the existence of MSS in non-hybrid columns for the TAME system. 
TAME (index 4) is formed by reaction of 2-methyl-1-butene (2M1B, index 1) and its isomer, 2-
methyl-2-butene (2M2B, index 2), with methanol (index 3), in the presence of inert components. 
The TAME reactions have been shown to be reversible and fairly exothermic (March, 1985). 
Several side-reactions can occur, where the isomerization reaction between the two isoamylenes 
is the most important: 2M1B ↔ 2M2B. Therefore, this reaction is taken explicitly into account, 

r+1

r-1 

r+2

r-2 

r+3 

r-3 



 67

resulting in a system with c=5 components, r=2 reactions and 32 =−+− rcπ degrees of 
freedom. 
The models and parameters used for describing the VLE are reported by Lieball (1998): 
Antoine's equation is used for the pure component vapour pressures and two different sets of 
binary Wilson parameters were studied for the Wilson activity coefficient model. The first set of 
Wilson parameters was retrieved from literature; the second set is based upon parameters 
estimated from UNIFAC (Aspen Plus, 1995). In addition, the reaction equilibrium correlation by 
Piccoli and Lovisi (1995) is applied (indices from above): 
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Note that a third reaction between methanol and 2M2B is a linear combination of the two 
reactions listed above and thus, it must not be taken into account. Next, a feasible reactive 
transformation has to be found. Applying the rules by Ung and Doherty (1995e), TAME is 
selected as the reference component for reaction (5.2), and 2M1B for reaction (5.3). Then, the 
transformation equations take the form: 
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( )PND xPP 41+=           (5.5) 

 
Figure 5.1 depicts the calculated reactive residue curve map for the literature set of Wilson 
parameters and a pressure of 5 atm. All reactive residue curves originate from the non-reactive 
methanol-butane azeotrope and end at pure methanol. The residue curve map for the parameter 
set estimated from UNIFAC, as well as the two corresponding maps at a pressure of 3 atm do not 
qualitatively differ from Figure 5.1. Thus, all these reactive residue curve diagrams in the 
transformed composition space are topologically identical to the 001 class of a non-reactive 
ternary mixture (one minimum-boiling binary azeotrope between the “lightest-” and “heaviest-
boiling” pure component of the mixture). Since the 001 class shows output multiplicities for any 
feed location in the ∞/∞ case, it can therefore be concluded by analogy that the non-hybrid MSS 
feed region of the TAME system consists of the full transformed compositions space. Thus, MSS 
exist for any physical feed composition in a non-hybrid reactive TAME column in the ∞/∞ case. 
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Figure 5.1. Reactive residue curve map of the TAME system at a pressure of 5 atm (Lieball, 

1998). “Isoamylenes” denotes both 2M1B and 2M2B. 
 
5.1.2 Non-Hybrid ∞/∞ Bifurcation Analysis 
 
Figure 5.2a illustrates the transformed composition space of the TAME system (where 
“isoamylenes” is used to denote both 2M1B and 2M2B). Moreover, the diagram shows two 
specific lines: the “azeotropic” line connects the methanol-butane azeotrope with the point in 
chemical equilibrium with pure TAME (X=[0.5 0.5]). The “equimolar” line consists of all feeds 
with a fraction of methanol identical to the sum of the fractions of the two isoamylenes. Note 
that the point [0.5 0.5] is not corresponding to pure TAME in a non- hybrid column, but to a 
mixture of all reactive components in chemical equilibrium with pure TAME. 
The non-hybrid ∞/∞ bifurcation analysis is not explained in great detail here, since it performs 
completely analogous to the non-reactive ∞/∞ analysis of a 001-class ternary mixture (Bekiaris 
et al., 1993). Figure 5.2a depicts the resulting non-hybrid ∞/∞ product paths for an equimolar 
feed location. In Figure 5.2b, the corresponding ∞/∞ bifurcation diagram is illustrated. Clearly, 
the point [0.5 0.5] in chemical equilibrium with pure TAME, which by design is the desired 
product in a non-hybrid column, is obtained in the column's bottoms product at the second limit 
point. It can be shown that if a feed on the “azeotropic” line is used, the desired product would 
be obtained at the other limit point. 

 

 
Figure 5.2. Illustration of the ∞/∞ product paths for an equimolar feed and the TAME system. 

 



 69

Using this knowledge from the ∞/∞ predictions, one can subdivide the transformed composition 
space into the four regions shown in Figure 5.3. For a feed in region A, the TAME point ([0.5 
0.5]) is not part of any non-hybrid product path and can thus not be obtained in a non-hybrid 
column. For a feed in region B, the TAME point ([0.5 0.5]) would lie at one of the limit points or 
between the two points (as shown above). For a feed in regions C or D, [0.5 0.5] is obtained on 
the “upper branch” of the bifurcation diagram (Figure 5.3b). From a control point of view, it is 
desirable to select a design, i.e., a feed composition, where the “TAME point” is located outside 
the interval of the product flowrate where MSS exist. Therefore, the limiting line of feed 
compositions is to be found 

 
 

 
Figure 5.3. Illustration of the ∞/∞ product paths for a feed where TAME ([0.5 0.5]) lies outside 

the interval where MSS exist. 
(denoted by “non-MSS line” in Figure 5.3), which separates the region of feeds C, where TAME 
is obtained inside the MSS interval, from the region D, where the steady state with a [0.5 0.5] 
product is unique.  
 
5.1.3 ∞/∞ Favorable TAME Feed Locations 
 
In this section, an inequality is derived for the transformed feed composition XF such that in the 
∞/∞ case of a TAME column, the bottoms product composition XB = [0.5 0.5] is obtained 
outside the MSS interval (Figure 5.3). This goal can be expressed mathematically: 
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>           (5.6) 

 
This means that the (relative) transformed distillate flowrate at the operating point where 

5.021 == BB XX  (“TAME”) is greater than the (relative) transformed distillate flowrate at the 
limit point marked with “*” in Figure  5.3b. 
At the limit point *, the distillate is located at the NM azeotrope, 01 =DX  and NMD XX 22 = , 
where XNM is the transformed composition of the NM azeotrope: [0.0 0.08]. The bottoms is 
located somewhere on the methanol-isobutene edge, 03 =BX , and thus 121 =+ BB XX . Combining 
this result with the component and the global mass balances in transformed units, one can 
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eliminate all remaining product compositions from the resulting system of linear equations and 
obtains: 
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At the design point (“TAME”), B is at the location in reactive equilibrium with pure TAME, 

5.021 == BB XX , and the distillate is located on the non-reactive butane-isoamylenes edge, 
02 =DX . Again, the remaining product compositions can be eliminated from the equations: 
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By substitution of equations (5.7) and (5.8) into (5.6), the condition on the transformed feed 
location XF is obtained after some re-ordering: 
 

NMNMFFF XXXXX 22221 2 +−>         (5.9 
 
TAME (in chemical equilibrium) can be obtained outside the MSS interval for all transformed 
feed locations fulfilling this inequality (5.9). By the derivation, these transformed feeds are 
located in region D from Figure 5.3a. 
 
 
5.2. Residue curve maps for heterogeneously catalysed reactive distillation of 
fuel ether TAME 
 
A principle sketch of the simple reactive batch distillation process is given in Figure 5.4. A 
heated still is filled with the molar liquid hold-up H, which consists of N components and has the 
composition x = (xl, . . ., xN)T. In the liquid phase, where the heterogeneous ion exchange catalyst 
is present, the reversible etherification takes place, labelled by horizontal arrows in Figure 5.4. 
 
    
Alcohol + Iso-Alkene               tert-Ether       (5.10) 
 
It is also possible that several side reactions occur (e.g. isomer/sat/on of iso-alkenes), so in the 
following the model will be formulated with M reactions. Caused by the heating input Q, a 
distillation is carried out simultaneously which leads to a mass transfer from the liquid phase into 
the vapour phase labelled by vertical arrows in Figure 5.4 – and  consequently, to a vapour molar 
flow rate V&  with the composition y = (yl, . . ., yN)T.  
The hold-up H and the vapour flow rate V& are measured and the quotient VH & is controlled via 
the heating input Q. In the still, there is an excess of catalytically active pellets, so the ratio 
between the wetted catalyst volume Vcat and the hold-up H is assumed to be constant. 
 

r+ 

r- 
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Figure 5.4. Sketch of a simple reactive batch distillation process 

 
The liquid phase is in the boiling state so that the temperature in the still corresponds to the 
boiling temperature of the liquid composition x at the given operating pressure p  
 

p) T(x,  T =             (5.11) 
 
According to this, vapour composition y and liquid composition x remain in phase equilibrium. 
A combination of the material balances leads to the following equation (Solokhin et al. 1990a, b; 
Venimadhavan et al., 1994), which describes the change in time of the mole fraction xi in the 
liquid phase of the still: 
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The first term on the right-hand side of equation (5.12) shows that a relation between hold-up H 
and vapour flow rate V&  has to be found. This quotient depends on the control system of the 
process. In this paper, the following heating strategy will be used: 
 

const
V
H

V
H

== 0

0

&&
           (5.13) 

 
This policy is physically significant and leads to an autonomous model (Venimadhavan et al., 
1994). The intrinsic reaction rate rj related to the number of acid groups of catalyst appearing in 
the second term on the right-hand side of eq. (5.12) has to be multiplied by the mean acid group 
concentration on the catalyst cL and the quotient of wetted volume of catalyst 0

catV , to hold-up H0. 
In the following, two parameters are introduced to formulate equation (5.12) in a comprehensive 
way. These are the dimensionless time τ and the Damköhler number Da: 
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It is obvious that the transformation defined in equation (5.14a) only makes sense, if the heating 
strategy given in equation (5.13) is valid. In equation (5.14b), the rate constant of reaction kf is 
related to the reference temperature T* = 333 K. Consequently, equation (5.12) can be written in 
dimensionless form as follows: 
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i =1, ... , N-1           
j = 1,  …, M           (5.15) 
 
As phase equilibrium is assumed, yi can be evaluated from the relation at boiling point: 
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Consequently, the appropriate equation to compute the boiling temperature Tb reads in 
accordance with a combination of equation (5.16) and summation equation in the gas-phase: 
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Since equation (5.17) cannot be explicitly solved for Tb, one has to use an appropriate iteration 
method. Hence, the turnover number rj of reaction j is described by the following expression: 
 

( )b
jj T,xrr =  , j = 1, … , M          (5.18) 

 
Taking into account the dependence of Tb on composition vector x and operating pressure 
implicitly formulated in equation (5.17) – equation (5.15) can be written as: 
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i =1, ... , N-1           
j = 1,  …, M            (5.19) 
 
To calculate the liquid mole fraction of the Nth component xN, the condition of summation in the 
liquid phase is used: 
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The first term on the right-hand side of equation (5.19) describes the mass transfer across the 
vapour-liquid interphase, which means the influence of distillation. In the composition space, 
this term can be represented by the part of the separation vector SEPi, to which component i 
contributes (Hauan and Lien, 1996). 
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As shown above, SEPi depends on the liquid-phase composition x and the operating pressure p. 
If SEPi = (SEP1, . . . , SEPN)T  equals the zero vector, no distillation occurs. 
The second term on the right-hand side of equation (5.19) characterizes the mass conversion in 
the liquid phase due to the chemical reaction. According to Hauan and Lien (1996) this term 
denotes the part of the reaction vector REA, to which component i contribute: 
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REAi shows a dependence on the liquid-phase composition x and the operating pressure p and 
additionally, a dependence on the Damköhler number Da. If REAi = (REA1, . . . , REAN)T  equals 
the zero vector, either chemical reaction is absent or the reaction is in chemical equilibrium. So 
equations (5.19)-(5.22) can be written vectorially as follows: 
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From equation (5.23) it is easy to derive the conditions for the existence of a steady state. The 
appropriate composition x is called fixed point (FP). Hence steady state demands: 
 

FPFP REA -  SEP =           (5.24) 
 
Finally it should be recapitulated that there are two independent parameters which determine 
SEP and REA. They are: 

• Damköhler number Da, 
• operating pressure p. 

 
As mentioned before, there are three reversible reactions taking place simultaneously in TAME-
synthesis. To calculate residue curve maps for the synthesis of TAME, it is necessary to calculate 
the phase equilibrium between liquid and vapour phases, chemical equilibrium constants in the 
liquid phase and the kinetics of the chemical reactions. 
 
According to equation (5.16) the liquid activity coefficients iγ  have to be evaluated. These can 
be computed by using the modified UNIFAC method (Weidlich and Gmehling, 1987; Gmehling 
et al., 1993). The equations and parameters for calculation of iγ  for TAME-synthesis using this 
method and the vapour pressures s

ip of all components can be taken from the quoted literature. 
Because of the fact that there are three reactions taking place simultaneously, three coupled 
chemical equilibria have to be considered. Rihko et al. (1994) proposed the following 
expressions which are based on their experiments (T in K): 
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• TAME synthesis from 2M1B: 
)T/5.4273exp(10057.1K 4

1,a
−×=                (5.25a) 

 
• TAME synthesis from 2M2B: 

)T/4.3374exp(10629.1K 4
2,a

−×=                              (5.25b) 
 

• isomerisation 
2,a1,a3,a K/KK =                             (5.25c) 

 
It can be noticed that in the interesting region of temperature between 290 and 420 K the 
synthesis of TAME from 2M1B is thermodynamically favoured in relation to the synthesis of 
TAME from 2M2B. The chemical equilibrium of isomerisation depends only slightly on 
temperature and prefers the formation of 2M2B. 
The micro-kinetics of the heterogeneously catalysed synthesis of TAME are formulated 
according to Oost and Hoffmann (1995b). Since the three reactions take place simultaneously 
and only two of them are linearly independent, the TAME-synthesis from 2M1B and from 2M2B 
are lumped together to a single reaction: 
 
2 MeOH + 2MB1 + 2MB2   2 TAME       (5.26) 
 
For this lumped reaction Oost and Hoffmann (1995b) give the following equation to describe the 
turnover number r1,2 : 
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The reaction rate constant for the lumped TAME synthesis 12,fk is given by the following 
Arrhenius equation: 
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In addition, the kinetics of the isomerisation has to be considered. Oost (1995) reported the 
following equation to calculate the turnover number r3: 
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The reaction rate constant 3,fk  can be evaluated by using an appropriate Arrhenius expression: 
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The set of model equations for TAME is composed of three ordinary differential equations, 
material balances and two algebraic equations which are condition of summation in liquid and 

r+1,2 

r-1,2 
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vapour phase, to solve the liquid-phase composition x and the temperature T. In addition, a 
second chemical reaction has to be taken into consideration. 
To simplify the graphical illustration in a triangle the mixture of isomers 2M1B and 2M2B are 
treated as one pseudo-component 'isoamylene' (IA), so that 
 

2M2B2M1BIA x  x  x +=            (5.31) 
 
Following the system of equations describing the model, the authors obtained the trajectories for 
the pure distillation of a nonreactive mixture IA/MeOH/TAME. Two binary azeotropic points 
were detected: between the olefin (IA) and the alcohol (MeOH), an unstable node, and between 
the ether (TAME) and the alcohol, a saddle point. These two points are linked by a distillation 
boundary, separatrix. Consequently there are two different stable nodes in the system: pure 
MeOH and pure TAME. If, in addition, the operating pressure p is varied, the following 
statement is valid: with increasing p both azeotropic points move towards pure MeOH. 

 
 

Figure 5.5. Residue curve maps for distillation without reaction (Da = 0) of the mixture 
IA/MeOH/TAME at operating pressure (a) p = 0.1 and (b) p = 1.0 MPa. 

 
For the residue curve maps of reactive distillation for TAME-synthesis, the operating pressure p 
is discussed as second parameter besides the Damköhler number Da. The diagrams were 
calculated using different operating pressures: p = 0.1 MPa and p = 1 MPa. The Damköhler 
number Da is enhanced starting with the value 10-4, via Da = 10-3 to Da = 1. 
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Figure 5.6. Residue curve maps for heterogeneously catalysed TAME-synthesis at operating 
pressure p = 0.1 and 1.0 MPa; Damköhler number: Da = 10-4, 10-3 and 1. 

 
At a low Damköhler number Da = 10-4, SEP is still dominating over REA, so that two stable 
nodes in MeOH and nearby TAME are developed. A slight enhancement of Da leads to Da =   
10-3. This case is qualitatively similar to the previous case except for the fact that the lower 
stable point has discharged from the TAME-vertex. If Da is increased to Da = 1, REA is strong 
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in comparison with SEP. Consequently, one stable node disappears and every trajectory runs into 
the collecting trajectory which is the only remaining separatrix in the composition space. This 
separatrix is in the vicinity of the chemical equilibrium line and ends in the MeOH vertex. 
By raising the operating pressure p a new behaviour of the system can be studied. A new saddle 
point appears, with the consequence that at Da = 10-4 and p = 1.0 MPa, three stable points exist. 
It is remarkable, as in addition to the stable node in MeOH vertex and in the region between 
chemical equilibrium and TAME vertex a third stable point is built in the isoamylene (IA) 
vertex. This circumstance is surprising as IA is the light-boiling pure component of the system. 
Thus, the statement that it is possible to enrich the highest volatile component above a certain 
pressure and a certain magnitude of REA is correct. 
It was shown above that two different kinds of saddle points can appear, caused by the 
combination of distillation and chemical reaction. The crucial parameters for occurrence and 
position of these saddles in residue curve maps are the Damköhler number Da and the operating 
pressure p.  At an operating pressure p = 0.1 MPa the line of chemical equilibrium lies in the 
vicinity of the product TAME and the temperature profile is continuously rising from pure IA 
(right margin of figure) to pure MeOH (left margin of figure). Raising the pressure leads to an 
enhancement of the temperature in the still, because of the exothermic characteristic of the 
TAME-synthesis; the line of chemical equilibrium is shifted towards the reactants MeOH and 
IA. The closer the line of chemical equilibrium gets to the line of the binary mixture MeOH/IA, 
the more the binary azeotropic point between MeOH and IA has an influence on the shape of the 
line of the boiling temperature. This leads, for adequately high pressure, to the formation of a 
minimum boiling temperature between MeOH and IA. 
An adequately high pressure can lead to the formation of a saddle point in the region of high 
mole fraction of reactant isoamylene. It can be explained by the existence of a temperature 
minimum along the line of chemical equilibrium, which has been moved into the vicinity of the 
binary methanol-isoamylene azeotrope.  
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Chapter 6 – Application of the infinite/infinite analysis to the TAME 
synthesis 
 
6.1. Analysis of the chemical non-equilibrium system – non-hybrid case 
 
An efficient use of the energy is as important as the care taken for energy production. Distillation 
handles about 3% of the total U.S. energy consumption (Stephenson and Anderson, 1980), more 
than 90% of all product recovery and purification separations in U.S. (Humphrey,1995) and 
more than 95% of chemical industries consumption worldwide (Ognisty,1995). Data from U.S. 
DOE (United States Department of Energy) (US DOE, 1995) indicate that distillation columns in 
U.S. consume 2.87·10P18P J (2.87 million TJ) by year which is equivalent to a continuous power 
consumption of 91 GW. To have an idea of how large is this number; the 441 nuclear power 
plants in operation all over the world have a total net installed capacity of 367 GW (IAEA PRIS, 
2005). The distillation processes are very energy-consuming systems and any small 
improvement on distillation can provide huge savings of energy. The energy consumption of a 
distillation process can be used in preliminary calculations as a key indicator of environmental 
impact and economical costs.  
 
The process intensification by combining several operations in the same unit is an option that can 
be sometimes very advantageous (Plesu et al, 2008). Tools and methodologies to evaluate the 
process integration and intensification opportunities are useful to optimize the energy used in the 
separation processes. The reactive distillation combines the reaction and separation inside the 
distillation column. Reactive distillation can naturally use the heat of reaction as a heating or 
cooling source.  
 
A useful tool used at the early stages of design to perform input-output analysis relating to 
distillation process systems is the infinite/infinite analysis which is based on residue curve maps. 
Infinite reflux and infinite number of stages are the simplifying hypotheses which have inspired 
the name of the ∞∞ /  analysis. This analysis was firstly proposed by Petlyuk and Avetyan 
(1971), but with a low impact on the scientific community outside USSR. The potential of this 
analysis was rediscovered by Bekiaris et al. (1993) which lead it to a great grade of maturity 
(Bekiaris and Morari, 1996a), it was extended to heterogeneous systems (Bekiaris et al., 1996b), 
hybrid distillation columns with reactive and non reactive sections (Güttinger and Morari, 1999) 
and its potential in process synthesis to find and rank feasible separation schemes according to 
the energetic consumption (Ulrich, 2002) has been studied. It is able to take into account the 
energy savings in the first steps of designing a distillation process and it can be used to evaluate 
new opportunities for the existing distillation systems. Barbosa and Doherty (1987a,b) and 
Doherty (1990) developed reactive residue curves in transformed coordinates. Ung and Doherty 
(1995) proposed a lever rule using this reduced coordinate space. In this reduced coordinated 
space based on reaction invariant compositions, it is not possible to fix the advance of the 
reaction to other values provided by the reaction equilibrium and mass balance. Hauan, Omtveit 
and Lien (1996), Hauan, Werterberg and Lien (1999a) introduced the reaction difference point. 
They showed that reaction moves in the composition space along straight lines, all of which pass 
through this same difference point behaving similarly to a difference point for an extractive 
distillation column (Hoffman, 1964). Lee et. al. (2000) introduced the concept of pseudo-feed 
and how it may be used to formulate a lever rule for the mass balance. The use of the pseudo-
feed concept joint with the infinite/infinite analysis extends the capabilities to this analysis to 
solve reactive distillation systems taking into account the reaction kinetics. Venimadhaven et al. 
(1994) studied the effects of kinetics on reactive distillation residue curve maps. They tracked 
the singular points as a function of the Damköhler number (Da) which is the ratio of a 
characteristic liquid residence time to a characteristic retention time. At large Da, the reaction 
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achieves equilibrium on every reactive stage, and at lower Da, the column is kinetically 
controlled. 
 
The applicability of the infinite/infinite analysis as a tool for an early oriented energy 
consumption minimization is extended in this paper to kinetically controlled reactions in reactive 
distillation columns including also hybrid configurations. For the hybrid configuration is used 
the approximate method (only one pinch on column profile) proposed by Güttinger (1999). The 
TAME synthesis is used as illustrative example for its importance on providing environmental 
friendly gasoline additives. The analysis is applied graphically on the reactive residue curve 
maps determined by Thiel et al. (1997). 
 
The infinite/infinite analysis is called in this way because, as mentioned in previous chapters, it 
assumes that the number of stages is infinite and the reflux rate is also infinite. In a non reactive 
distillation column or in a reactive distillation column assuming equilibrium in all the stages, 
there are only two degrees of freedom in the model; in order to fulfill the degrees of freedom, the 
pressure and the distillate or bottom flow rate can be used. When the chemical equilibrium is not 
reached, then there are two variables more to define: the Damköhler number and the overall 
reaction turnover. As the number of stages is considered infinite, although the Damköhler 
number will be small, the column can reach any reaction turnover that satisfies the conditions of 
the analysis. A column feasible with an infinite number of stages does not mean that the same 
results can be reached with a reasonable number of stages but we get the limit conditions. The 
infinite/infinite analysis must be applied with caution to multiple feed columns as a maximum 
reflux could exist. The infinite/infinite analysis allows checking the feasibility and interrelation 
of the system streams without any column design considerations, detects the presence of 
multiplicity regions and a first comparative evaluation of energy requirements is obtained. 
 
The vapour flow rate generated at the reboiler is proportional to the energy provided to the 
distillation column. Assuming the McCabe-Thiele hypothesis (1925), this vapour flow rate is 
constant along the column and the heat provided at the reboiler is the same that is eliminated at 
the condenser but at a lower temperature. Applying a mass balance around the condenser and the 
definition of reflux ratio, the next expression is obtained: 
 

( )1+⋅=≈ rDVQreb  
 
For distillation columns, an heuristic for a first approach can be to minimize the distillate flow 
rates instead of the minimizing the feed flow rate to each unit. Then the energy requirements can 
be considered proportional to the distillate flow rate (D) which can be calculated easily from the 
infinite/infinite analysis because its optimal value is independent of the number of stages and 
reflux. These assumptions were used successfully by Ulrich et al (2002). 
 
The conditions that must be fulfilled to get a feasible separation are the next: 
 

- The distillate and the bottom must be connected by a column profile described by residue 
curves. 

- The column profile contains at least one singular point and not all the profile is on the 
unfavorable formation of products for kinetically controlled reactions. 

- Fulfillment of the mass balance.  
 
At infinite reflux, the column profile of any packed column must be coincident with a section of 
a residue curve. At infinite reflux and infinite number of stages, a singular point where the liquid 
and vapor compositions are the same (pure component or azeotrope) must be in the column 
profile. The existence or position of the reactive azeotropes and the role of the pure components 
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and azeotropes depends on the Damköhler number. For non reactive systems, the distillate, feed 
and bottoms compositions must be aligned fulfilling the lever rule when are represented 
graphically. For kinetically controlled reactions, the distillate, pseudo-feed and bottoms must be 
aligned and the pseudofeed must be aligned with the feed and reaction difference point. The 
pseudo-feed indicates the reaction turnover, in other words, the advance of the reaction inside the 
reactive distillation column. 
 
But the application of the infinite/infinite analysis is not straightforward for the chemical non-
equilibrium systems because the advance of the reaction is an unknown parameter. For an 
equilibrium reaction it can be demonstrated that the lever rule is satisfied for the transformed 
reactive compositions. The feed assuming equilibrium reaction becomes fixed, but when there is 
a chemical non-equilibrium, the infinite/infinite hypothesis lets one degree of freedom without 
being fixed and the feed point can be in any position over a line defined by the stoichiometry of 
the reaction (figure 6.1)  

 
Figure 6.1. Possible feed locations 

 
 
In order to apply the infinite/infinite analysis, a pseudo-feed composition is assumed to express 
the advance of the reaction along the column. The overall column mass balances for a non 
reactive system where the lever rule is applied are: 
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Next, it is considered the following reversible reaction for an ideal mixture, where reactants A1 
and A2 convert into product B1. It is assumed that A1 is light, A2 intermediate and B1 heavy in 
terms of their volatilities, A1 and A2 forming a stoichiometric mixture. 
 

 
 
In the case of TAME synthesis, A1 = Isoamylenes, A2 = Methanol, B1 = TAME. 
 
This reaction takes place inside the reactive distillation column. The reaction is catalytic and 
therefore, the extent to which it occurs on any tray can be defined. A feed stream containing 
species A1 and A2 enters the column. The total and component material balances around the 
column are presented in Eqs. (6.2). 
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In Eq. (6.2), ∑υ

i
i is the sum of the stoichiometric coefficients of the reactants and products, 

where the coefficients of the reactants are taken as negative and those of the products as positive 
since the reaction consumes the reactants and generates the products. Hence, we have ∑υ

i
i as 

minus one (= -1 + - 1 + 1) for the above reaction. ξ is the total molar turnover of the reaction (as 
a flowrate in mol/time), and υ is the stoichiometric coefficient vector, [-1,-1, 1]T, for the 
specified reaction. 
From Eq. (6.2), if the term B

i
D
i BxDx + is combined as ( ) *FxBD + , by performing the substitution 

in Eq. (6.2), the following Eq. (6.3) is obtained. F*x is the pseudo-feed composition, 
( ) ( )BDBxDx B

i
D
i ++ , and δR is the reaction difference point, that is ∑υυ

i
i  (Hauan et al., 

1999a). In Eq. (6.3), F*x is the vector combining the distillate and bottom composition vectors 
and can be called a pseudo-feed composition vector since it is the linear combination of the 
distillate and bottoms product streams. 
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Conceptually, the reaction in the column converts the feed stream F into the pseudo-feed stream 
F*. Then, we obtain the distillate product D and the bottom product B from the pseudo-feed F*. 
The location of the real feed composition xF (figure 6.2), according to relative amounts of (D+B) 

and ∑ ξυ
i

i  using the lever rule is on the straight line between the pseudo-feed (xF*) and reaction 

difference point (δR = [1, 1, -1]T), because the total sum of stoichiometric coefficients ∑υ
i

i is 

negative. Another important implication of Eq. (2.4) is that the composition change from feed to 
pseudo-feed is linear even for a cascade system with reaction and separation in a composition 
space just as for a system with only reaction (Hauan et al., 1999a). Hence, the extent of the linear 
shift from the real feed to the pseudo-feed is that of net overall reaction in the column. 
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Figure 6.2. The illustration of the reactive lever rule in composition space. 
 
The lever rule can be applied for the resulting pseudo feed composition, distillate and bottoms 
compositions. For the mass balances with the reaction term, the lever rule is not fulfilled but the 
reaction term can be moved to the left side of the equations resulting: 
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Making a change of variable, the feed flowrate F and the feed composition F

ix  can be 
transformed into the pseudo-feed indicated with F* and *F

ix  respectively, according to the 
following equations: 
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In this case, the system of equations for the column mass balances becomes: 
 

B
i

D
i

F
i BxDxFxF

BDF
+=

+=
**

*
         (6.6) 

 
After the calculations, the real compositions and flowrate of the feed can be obtained by 
applying equation (6.5).  
 
Using equations (6.6), the lever rule is fulfilled, the expressions of it being as follows: 
 

( )
( )B

i
F
i

F
i

D
i

xx
xx

D
B

−
−

= *

*

 
( )
( )B

i
D
i

F
i

D
i

xx
xx

F
B

−
−

=
*

*
 

( )
( )B

i
D
i

B
i

F
i

xx
xx

F
D

−
−

=
*

*
    (6.7) 

 



 83

Hence, we will apply graphically the lever rules from the equations 6.3 and 6.7 to solve each of 
the mass balances: 
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All the residue curve maps obtained by Thiel et al. (1997) are taken for further study, 
considering that the pseudo-feed composition is equal to the correponding chemical equilibrium 
composition. A stoichiometric feed of both reactants without containing any product will react 
inside the column until a desired conversion; if the infinite/infinite analysis is applied directly to 
this feed composition, it is equivalent to consider that there is no advance of the reaction and in 
this case, the reactants are simply separated by a binary distillation (figure 6.2). Then, the 
pseudo-feed must not be understood as the feed composition to the column, it must be 
considered as a measure of the advance of the reaction in the column.  

 
Figure 6.3. Mass balance for simple binary distillation 

 
 
The analysis is applied to non reactive distillation columns and to reactive distillation columns. 
For the non reactive columns, it is supposed a configuration containing a pre-reactor which 
reaches the chemical equilibrium composition that is fed to the distillation column. The crude 
feed is fixed at the stoichiometric composition of reactants: 1:1. The pseudo feed to the reactive 
distillation column is fixed to the same reaction turnover that is obtained by the traditional 
scheme of reactor and column in order to compare them easily. The influence of the pressure is 
evaluated using 1 and 10 bar and several values of the Damköhler number are evaluated in the 
reactive distillation column: 0,0001; 0,001 and 1. The influence of changing the reaction 
turnover is evaluated by using a pressure of 1 bar and using the turnover reaction obtained by the 
traditional system of reactor and column at 10 bar. The choice of the variables allows comparing 
their influence. 
 
The continuation paths satisfying the required conditions of the infinite/infinite analysis are 
determined and the bifurcations diagrams are calculated to provide information on the influence 
of the pressure and the Damköhler number on the presence of multiple steady states and the 
purities attained on the streams. The bifurcation diagrams illustrate the influence of the output 
flowrates on the distillate and bottoms composition. At the value B/F=0, all the feed is recovered 
by the distillate and the distillate has the same composition as the pseudo-feed. At the value B/F 
= 1, all the feed is recovered in the bottom of the column which has the same composition as the 
pseudo-feed. The feasability and the influence of the bottoms flow rate on the distillate and 
bottoms purities for each one of the evaluated situations is detailed in the following paragraphs. 
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The first system evaluated is a traditional system of a reactor followed by a distillation column at 
1 bar (figure 6.4). The reactor is fed with a stoichiometric mixture of the reactants methanol 
(MeOH) and isoamylenes (IA) indicated in the continuation diagram as xF. According to the 
stoichiometry of the reaction, the differential point δ is obtained. The composition at the exit of 
the reactor must be on the straight line defined by δ and xF; the composition at the exit of the 
reactor is indicated as the pseudo feed to the reactive distillation columns with an asterisk (xF*). 
There are several scenarios where the compositions of the reactor exit can be located. The 
residue curve map is divided by a boundary line in two distillation regions. The azeotropic 
composition of methanol and isoamylene is the unstable node from where all the residue curves 
depart. Some of the residue curves converge to the stable node of the methanol in the upper 
distillation region and some other residue curves converge to the TAME vertex in the lower 
distillation region. If the advance of the reaction produces a composition of xF* in the upper 
region, then it is not possible to collect pure TAME at the column bottoms: there is not any 
residue curve from the upper region that reaches pure TAME. On the other hand, if the extent of 
the reaction is big enough inside the reactor and the composition at the exit of the reactor is on 
the lower distillation region, then there is an optimal value of bottoms flow rate that provides 
pure TAME at the column bottoms. According to the lever rule, at higher reactor conversion then 
higher pure TAME flow rate can be collected at the bottoms. The maximum conversion inside a 
reactor is limited by the chemical equilibrium; in this case its value using as a calculation basis 
one mole of crude feed is of 0,39. Figure 6.4 shows this optimal case when the composition at 
the exit of the reactor is at chemical equilibrium. It  is observed that at the highest bottoms flow 
rate that produces pure TAME, there is some TAME that it is lost by the distillate due to the 
presence of the boundary line. But as the distillate composition is depending on the pressure and 
the reaction kinetics, in order to be able to make comparisons of the effect of each variable we 
will keep the stoichiometric feed to the reactor. The conclusions derived from the other figures 
(figures 6.4 – 6.14) are presented in the next paragraphs.   
 
When the column profile is of type II, the situation corresponds to low values of B/F, in this case 
the bottom composition is constant at the pure TAME for the non reactive systems. The column 
profile type II for reactive distillation systems produces a bottom composition corresponding to 
the ternary azeotrope (IA-MeOH-TAME); the ternary azeotrope becomes poorer in TAME when 
the Da number increases. When the Da number equals to 1, then the ternary azeotrope disappears 
and pure methanol is obtained in the bottom of the column. Hence, as the Da number increases, 
the TAME purity in the bottom decreases and its maximum value is obtained at higher values of 
bottom flowrate B/F. Therefore, the highest bottom flowrate collecting pure TAME is obtained 
by the traditional reactor and column system. In the type II profiles, the TAME composition in 
the distillate decreases until a value around 0.1, while the isoamylene and methanol composition 
increases for most of the cases. Da=1 and P=1 bar is one of the exceptions, in this case the 
TAME is collected by the distillate while the methanol is obtained at the bottom of the column; 
the TAME composition in the distillate stream increases until a maximum value around 0.7; at 
the same time the isoamylene composition also exhibits an increasing tendency. A similar 
behaviour can be noticed in the case of Da=0.001 and P=10 bar, but here the main component in 
the distillate is the isoamylene and not TAME, which only increases until around 0.3. For a 
Da=0.0001 and P=10 bar, it is observed that the composition of isoamylene in the distillate 
remains constant in this segment of bifurcation diagram. 
 
When the column profile is of type III, the TAME composition begins to decrease due to the 
presence of the methanol collected in the bottoms instead of being in the distillate. In the case of 
Da=1 and P=1 bar, the TAME changes from being recovered mainly in the distillate to being 
recovered at a similar purity in the bottoms. The methanol composition decreases in distillate and 
bottom while the isoamylenes composition increases. An important aspect is that a multiplicity 
zone around B/F=0.5 is clearly defined for the case of Da=0.0001 and P=10 bar. The multiple 
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steady state has three branches: two stable and one unstable. The difference in methanol in the 
distillate between the upper branch and lower branch is around 0.1. The convergence of a 
commercial simulator in a multiplicity zone is very complicated and the column presents the risk 
to change its operation from one branch to the other. Usually the multiplicities zones must be 
avoided if there are not great advantages to operate on the domain defined by them. In the case 
of P=1 bar, there are multiplicities noticed when the column profile changes from type II to type 
III, for Da= 0.001 and 0.0001 (B/F = 0.61 and 0.64 respectively). These multiplicities are quite 
small but they are just near the values that maximize the TAME production and separation. In 
this case, it can be recommended to work on the multiplicities zone. Due to the multiplicity, the 
isoamylenes are absent in the bottom stream or they are present in a low concentration. 
 
When the column profile is of type I, the distillate is at the azeotropic composition of isoamylene 
and methanol. This azeotrope is sensitive to the operating pressure and the methanol purity on 
the distillate changes from 0.20 at 1 bar to 0.36 at 10 bar. The concentration of methanol remains 
constant at the bottoms while the isoamylenes increase their concentration provoking a further 
decrease of TAME concentration in the bottom. In the case of P=1 bar and Da= 1, pure 
isoamylenes are recovered on the distillate; its composition increases in the bottom while the 
methanol and TAME compositions decrease. 
 
From the results obtained, it can be observed the influence of the pressure on the TAME 
synthesis. For the non integrated reactor and column systems, the optimum B/F at 10 bar is 0.26 
while at 1 bar is 0.60, while the TAME lost in the distillate compositions at 10 bar is 0.03 and at 
1 bar is 0.1. The optimum B/F is considered to be the value which allows a maximum purity of 
TAME with smaller losses of TAME in the other stream. Qualitatively, the traditional system is 
not influenced by the pressure. On the other hand, for the reactive distillation system, the 
pressure has a great influence on the results. At Da=0.0001, the P=1 exhibits a small multiplicity 
while the multiplicity at P=10 atm is very pronounced. At Da=0.001, the bifurcation analysis is 
qualitatively similar to the obtained at Da=0.0001 at P=1 bar; on the other hand, at P=10 bar and 
Da=0.001, the results of the analysis are qualitatively more similar to the ones obtained at P= 1 
bar and Da=1. For Da=1 at P=10 bar, the bifurcation analysis can not be performed because the 
pseudo-feed is on the boundary line. 
One of the main conclusions that can be obtained from the infinite/infinite analysis is that when 
the Da increases then the purity of the main product TAME decreases on the bottom stream; at 
high values of Da=1 the TAME can be recovered in the distillate instead of the bottom. Then, 
from the obtained results, it does not seem too much advantageous to use an entire reactive 
distillation in contrast with using the traditional system of a reactor followed by a distillation 
column. From this point of view, a hybrid reactive distillation column could be a more 
advantageous solution. 
 
Up to this point, it has been considered that the pseudo-feed composition was in the chemical 
equilibrium of the corresponding pressure. The pseudo-feed composition is not defined in one 
fixed point, but it is situated on a locus defined over a line of compositions according to the 
crude feed and stoichiometry of the reaction. Therefore, in order to be able to compare the 
influence of this pseudo-feed composition, it has been fixed at the value corresponding to the 
higher chemical equilibrium pressure. This allows us to study the influence of the same pseudo-
feed at different pressure and the influence of the same pressure with a different pseudo-feed. 
 
When the comparison is made at the same pressure (P= 1 bar) with a lower conversion in the 
column, the bifurcation diagrams are qualitatively quite similar, but there are some remarkable 
differences as the type III region is situated in a larger zone of the bifurcation diagram and the 
multiplicities becomes smaller. The most different diagram is at Da=1: the type III profiles 
region becomes narrower. The decrease of conversion on Da=1 at the bottom leads to the result 
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that the composition of TAME is lower and in a sharpest shape at the maximum. The effect in 
the distillate is that the isoamylenes become the predominant component in the distillate 
compositions instead of the TAME; the TAME composition presents a sharper maximum when 
the profile changes from type II to type III, the methanol composition is very low not only for 
profile type I but also for type III. In the bottoms, the methanol presents a sharp maximum at the 
change from profile III to I.  
 
When the study is made at two different pressures (P=1 bar and P=10 bar) at the same 
conversion in the column, the bifurcation diagrams show some remarkable differences. These 
differences are not remarkable for non reactive systems, but for the reactive distillation systems 
the differences are significant. For a Da=0.0001 and P=10 bar, the presence of multiple steady 
states was on a quite big region; for Da=0.0001 and P=1 bar, the presence of multiplicities was 
smaller but clearly observed; for P=1 bar and the same pseudo-feed composition used for P=10 
bar then the multiple steady states disappears completely. On the other hand, for Da=0.001 at 
P=10 bar there were not multiplicities detected and for P=1 bar with the same pseudo-feed there 
is a small bifurcation zone detected when the profile changes from type II to III. It is also 
remarkable that for Da=1 there was no solution for P=10 bar, but it is feasible for P=1 bar. The 
shape of the bifurcation diagrams remains qualitatively quite similar when the pseudo-feed 
changes, but the effect of the pressure has a high impact over the system due to the influence on 
the azeotropic compositions, providing qualitatively different results.  
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Figure 6.4. Bifurcation diagram of distillate compositions for the TAME synthesis at Da=0, P=1 bar and real-feed composition at the corresponding chemical equilibrium at 1 bar. 
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Figure 6.5. Bifurcation diagram of distillate compositions for the TAME synthesis at Da=0.0001, P=1 bar and real-feed composition at the corresponding chemical equilibrium at 1 bar. 
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Figure 6.6. Bifurcation diagram of distillate compositions for the TAME synthesis at Da=0.001, P=1 bar and real-feed composition at the corresponding chemical equilibrium at 1 bar. 
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Figure 6.7. Bifurcation diagram of distillate compositions for the TAME synthesis at Da=1, P=1 bar and real-feed composition at the corresponding chemical equilibrium at 1 bar. 
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Figure 6.8. Bifurcation diagram of distillate compositions for the TAME synthesis at Da=0, P=10 bar and real-feed composition at the corresponding chemical equilibrium at 10 bar. 
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Figure 6.9. Bifurcation diagram of distillate compositions for the TAME synthesis at Da=0.0001, P=10  bar, real-feed composition at the corresponding chemical equilibrium at 10 bar. 
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Figure 6.10. Bifurcation diagram of distillate compositions for the TAME synthesis at Da=0.001,P=10  bar and real-feed composition at the corresponding chemical equilibrium at 10 bar. 
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Figure 6.11. Bifurcation diagram of distillate compositions for the TAME synthesis at Da=0, P=1 bar and real-feed composition at the corresponding chemical equilibrium at 10  bar. 
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Figure 6.12.Bifurcation diagram of distillate compositions for the TAME synthesis at Da=0.0001,P=1 bar and real-feed composition at the corresponding chemical equilibrium at 10 bar. 

Saddle node
Stable node
Unstable node

Saddle node
Stable node
Unstable node



 96

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B/F

Co
m

p.
 D

is
til

la
te Distillate

MeOH

Distillate
TAME

Distillate
IA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B/F

C
om

p.
 B

ot
to

m
s Bottoms

MeOH

Bottoms
TAME

Bottoms
IA

 

xF*

xB

xD

xF

δR=[1, 1, -1]MeOH

TAME IA

(D
+B)

xF*

xB

xD

xF

δR=[1, 1, -1]MeOH

TAME IA

(D
+B)

 
 
Figure 6.13. Bifurcation diagram of distillate compositions for the TAME synthesis at Da=0.001, P=1 bar and real-feed composition at the corresponding chemical equilibrium at 10 bar. 
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Figure 6.14. Bifurcation diagram of distillate compositions for the TAME synthesis at Da=1, P=1 bar and real-feed composition at the corresponding chemical equilibrium at 10 bar. 
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6.2. Analysis of the chemical non-equilibrium system in a hybrid distillation 
column  
 
In the last section it was seen that due to the reaction on the entire column, TAME decomposes 
on methanol and isoamylene and can not be obtained pure TAME at the bottoms. The use of a 
hybrid column with a reaction section at the upper part and a non reactive section at the lower 
part, could give the benefits of both kinds of operations (reaction and separation). It was seen in 
the last section that with a non reactive column is possible to reach pure TAME at the bottoms 
and with a reactive column, the azeotrope in the distillate can disappear.  
The same resolution procedure applied to the last section can be used for hybrid distillation 
columns. In this case, there is not an unique residue curve from the distillate to the bottoms, the 
column profile would be defined by two residue curves: at the lower part of the column a non 
reactive curve and at the upper part of the column a reactive curve. Both residue curves must 
intersect in order to have a feasible column profile. According to Güttinger (1999) we will apply 
the approximate method that requires only one pinch point for the entire column. For the hybrid 
systems evaluated, there are not multiplicities. 
Figure 6.15 shows the analysis of a hybrid column with a Damköhler number of 0,0001 and 10 
bar. In the hybrid colum it is possible to reach pure TAME at the bottoms but the reaction only 
changes the position of the boundary line increasing the quantity of TAME in the distillate. Due 
to the complexity of this hybrid graphics that superposes the non reactive in green color with the 
reactive in red color, it will be explained in more detail the fulfilment of the conditions of 
feasibility.  
At the beginning when B/F=0 all the pseudofeed is collected at the bottoms, the bottoms 
composition coincides with the pseudo-feed and the distillate corresponds to the azeotrope 
methanol isoamylene. An increase of the bottoms flow rate leads to the compositions described 
by the orange line. In this case, the profiles contain the pinch point of the azeotrope methanol-
isoamylene which is the unstable node of three distillation regions on the reactive residue curve 
map. All the profiles situated in the left side of the discontinuous line indicating the chemical 
equilibrium converges to this azeotrope. It is a condition of feasability that a part of the column 
profile must be on the zone where the reaction that forms the product takes place. All the non 
reactive residue curves diverges from the azeotrope methanol-isoamylene which is in the 
reaction zone where the formation of product takes place. This fact assures that any non reactive 
residue curve reaches the zone where the reactive curves converge to their unstable node. When 
the bottoms composition does not contain isoamylenes and the bottoms flow rate is increased, 
then the bottoms compositions follows the edge of the triangle towards pure TAME meanwhile 
the distillate follows the reactive boundary line. Both lines are indicated on the continuation 
diagram by blue lines. The column profile follows the triangle edge methanol-TAME until the 
saddle point of the non reactive map for this mixture, then follows a very short distance the non 
reactive boundary line indicated in green until the reactive boundary line in red is met, which is 
then used to reach the reactive saddle point. We are following a path against the direction of the 
residues curves, towards the unstable node. The presence of the saddles on the profile and the 
existence of residue curves from the bottoms to the distillate assure the feasibility. Finally, the 
distillate composition moves towards the pseudo feed meanwhile the bottoms composition is 
pure TAME. This last movement is indicated in violet; as the distillates are on the distillation 
region of the stable node (TAME) for the non reactive map, the existence of residue curves from 
the distillate to the bottoms is assured. It is important to notice that a pseudo feed at the left side 
of the reactive equilibrium curve could not be reached because all the column profile would be in 
regions where the formation of product TAME is not favourable.  
In figure 6.16 there are some points that are a clear example of the fact where all the 
requirements are fulfilled but all the profile is on the unfavourable zone of formation of TAME. 
The part of continuation path in colour violet and the last small section of the blue one run over 
the reactive boundary until the non reactive boundary and to the non reactive azeotrope. The 
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profiles contain a pinch, the lever rule is satisfied and there is a feasible profile from the distillate 
to the bottoms but any part of the profile is not favourable to form TAME. In this situation, it can 
be used a pseudo feed enriched with isoamylene as was explained at the last section for the non 
reactive column. In this way, it would be possible to collect pure TAME at the bottoms and the 
azeotrope methanol with isoamylene on the distillate. Figure 6.17 for a Damköhler of 1 shows 
that although the Damköhler increases similar results are obtained. Figure 6.18 shows that the 
pressure has an important role in the process and with a Damköhler equal to 1 and 1 bar is not 
feasible to obtain the pure TAME because the unstable node for the reactive residue curve map is 
pure isoamylene. 
According to the results obtained, using a stoichiometric crude feed to the system, the worst 
results are obtained by the use of an entire reactive distillation column because TAME 
decomposes before being collected at the bottoms and it is not possible to collect pure TAME. 
The hybrid column with a non reactive section at the bottoms overcomes this limitation and 
reports some advantages as the use of the heat of reaction in the distillation column and 
simplifies the system as the reactor is not required anymore. The presence of some small 
proportion of TAME product at the distillate is not a problem as it can be recycled to the system 
jointly with the non reacted components. The presence of TAME in the distillate can be avoided 
by increasing the content of isoamylene in the feed of the column in order that the distillate 
reaches the azeotropic mixture isoamylen-methanol instead of the boundary line. Then pure 
TAME is collected at the bottoms and the azeotrope of methanol and isoamylen at the distillate. 
The distillate composition is mixed with the crude stoichiometic feed that provides the feed of 
the reactor. The lever rule is also fulfilled for mixing streams. From the representation of the 
bifurcation diagram are not observed multiplicities. The calculations of the bifurcation and 
continuation diagrams presented in the previous pages are referencing the distillate flow rate to a 
crude feed without the recirculation of the distillate. When a recirculation of the distillate with 
TAME is taken into account for the traditional system of at 1 bat at the optimal point, the value 
reported of D/F is of 0.146,  a value smaller than the one obtained by using an excess of 
isoamylene in the distillate that leads a value of 0,306. When the recirculation of the distillate 
with TAME is considered for the system at 10 bar, the value of D/F becomes 1,385 in front of a 
value 1,286 obtained by the excess of isoamylene on the column feed. The traditional system of 
reactor and distillation column at 1 bar (figure 6.20) provides a lower recirculation distillate flow 
rate than the system at 10 bar (figure 6.21) because the advance of the reaction to produce 
TAME in the reactor is higher. The hybrid reactive distillation column is able to overcome the 
equilibrium limitation of the reaction and a total conversion is attainable (figure  6.22). Figure 
6.23 shows the relation between the distillate flow rate and the advance of the reaction according 
to the feed to the reactor or the overall feed to the reactive distillation column. For the traditional 
system of reactor and column at 1 bar, 10 bar and the reactive hybrid column, the main 
difference is noticed in regard of the advance of the reaction that can be achieved. Taking into 
account that B/F is constant and equal to 0,5 for all the situations with recycle stream, for low 
reaction conversions the distillate flow rate is huge in relation with the bottoms flow rate of 
product. At low advance of the reaction, any small increase on the advance of the reaction leads 
to an important decrease of the recycled flow rate and the energy requirements. At high advance 
of the reaction, the benefits of a small increase on the advance of the reaction leads to poor 
improvements. The advance of the reaction in the traditional system depends on the temperature 
of the reactor, at higher pressure considered leads to higher boiling point and higher 
temperatures. The decrease of the temperature in order to push the equilibrium constant to form a 
higher quantity of TAME can lead to lower reaction kinetics. At the hybrid reactive distillation, 
the chemical equilibrium is not a restriction and seems the best option from the operational and 
energetical point of view. 
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Figure 6.15. Bifurcation diagram of distillate compositions for the TAME synthesis in hybrid distillation column,  
at Da=0.0001, P=10 bar and real-feed composition at the corresponding chemical equilibrium at 10 bar. 
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Figure 6.16. Bifurcation diagram of distillate compositions for the TAME synthesis in hybrid distillation column,  
at Da=0.001, P=10 bar and real-feed composition at the corresponding chemical equilibrium at 10 bar. 
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Figure 6.17. Bifurcation diagram of distillate compositions for the TAME synthesis in hybrid distillation column,  
at Da=1, P=10 bar and real-feed composition at the corresponding chemical equilibrium at 10 bar. 
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Figure 6.18. Bifurcation diagram of distillate compositions for the TAME synthesis in hybrid distillation column,  
at Da=1, P=1 bar and real-feed composition at the corresponding chemical equilibrium at 1 bar. 
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Figure 6.19. Hybrid reactive distillation column overcoming chemical equilibrium 
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Figure 6.20. Traditional system of reactor and distillation column at 1 bar using an excess of 

isoamylene on the reactor feed. 
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Figure 6.21. Traditional system of reactor and distillation column at 10 bar using an excess of 

isoamylene in the reactor feed. 
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Figure 6.22. Hybrid reactive distillation column at 10 bar using an excess of isoamylene in the 

column feed. 
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Figure 6.23. Influence of the advance of the reaction on the performance of various process 
configurations 
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Conclusions  
 
This study extends the infinite/infinite analysis to chemical non-equilibrium systems by the use 
of a pseudo-feed which is related to the overall advance of the reaction on the column. 
 
A type of multiplicity is detected by the infinite/infinite analysis; this multiplicity depends on the 
Da number, at Da=0 and Da=1 there are not multiplicities while some multiplicities are observed 
when the Da number varies between 0 and 1. 
 
The reactive distillation columns for TAME synthesis show some multiple steady states in some 
of the bifurcation diagrams. These multiple steady states can be avoided by changing the Da 
number, the column pressure or the pseudo-feed composition. 
 
At Da=1 and P= 10 bar, the TAME is the predominant component in the distillate of most of the 
bifurcation diagrams. When it is used stoichiometric feed, some quantity of TAME is collected 
by the distillate due to the presence of a boundary line in the residue curve map. 
 
The traditional system of a reactor followed by a distillation column has been compared to the 
use of an entire reactive distillation system. The traditional system configuration is more 
advantageous than the reactive distillation system because pure TAME can not be obtained in the 
column bottoms due to its decomposition in methanol and isoamylenes. 
 
When the boundary line is close to the residue curve map edge as in 10 bar, it is preferable to 
introduce stoichiometric feed at the reactor and recirculate the non reacted components with 
some of the TAME product than use an excess of isoamylene to avoid this presence. When the 
boundary line is more distant to the edge as happens at 1 bar, it is preferable to use the excess of 
isoamylene to avoid the presence of TAME in the distillate. 
 
In the traditional system of reactor and column, to maximize the advance of the reaction and 
minimize the recycle flow rates of the distillate of the column, the temperature of the reactor 
must be refrigerated at low temperature. 
 
The  hybrid reactive distillation columns overcomes the limitation of the chemical equilibrium 
and pure TAME can be collected using a non reactive section at the bottoms. The heat of the 
reaction is used directly by the reactive distillation column. 
 
From the results, it seems as a promising alternative the use of a hybrid reactive distillation 
column with a total reflux to avoid the recycle of reactants and reach a total conversion. 
 
The next step is to proceed with rigorous simulations to validate the results. 
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